K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

Chọn đáp án C

1 tháng 1 2018

26 tháng 2 2019

Đáp án D

Phương pháp:

+ Tìm tâm và bán kính của mặt cầu

+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M

+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu

Cách giải:

Mặt cầu (S) có tâm 

nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm  M  thuộc mặt cầu (S) sao cho khoảng cách từ M  đến mặt phẳng (P) là nhỏ nhất thì M  là giao điểm của đường thẳng d  đi qua I , nhận  n P → = 2 ; - 1 ; 2  làm VTCP với mặt cầu.

Phương trình đường thẳng 

Tọa độ giao điểm của đường thẳng d  và mặt cầu (S) thỏa mãn hệ phương trình

7 tháng 12 2017

Đáp án C

Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .

C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D

Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .

Tam giác SAC vuông tại

 A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3

Mặt khác: A D ∩ S C D = D  và M là trung điểm AD nên:

d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6

18 tháng 4 2019

22 tháng 3 2017

Đáp án B

30 tháng 6 2017

11 tháng 2 2018

Đáp án đúng : A