K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

Góc giữa AB và DD' = góc giữa AB và AA' ( vì DD'=AA')

Nên bằng 90 độ

10 tháng 3 2022

\(\widehat{\left(AB,DD'\right)}=\widehat{\left(AB,AA'\right)}=\widehat{BAA'}=90^o\) do DD'//AA'.

11 tháng 9 2019

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

Gọi I là tâm hình vuông BCC'B'

Trong mặt phẳng (BC'D') vẽ IK ⊥ BD' tại K

Ta có IK là đường vuông góc chung của BD' và B'C

b) Gọi O là trung điểm của BD'

Tam giác BC’D’ có OI là đường trung bình nên :

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

Vì ΔIOB vuông tại I có đường cao IK nên:

Giải bài 6 trang 126 sgk Hình học 11 | Để học tốt Toán 11

10 tháng 5 2019

Đáp án D

Có hình chiếu của AC' xuống đáy là AC mà AC ⊥ BC nên AC'BD. 

22 tháng 9 2023

a) Kẻ \(OH \bot SB\left( {H \in SB} \right)\)

\(S.ABC{\rm{D}}\) là chóp tứ giác đều \( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AC\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\( \Rightarrow AC \bot \left( {SB{\rm{D}}} \right) \Rightarrow AC \bot OH\)

Mà \(OH \bot SB\)

\( \Rightarrow d\left( {AC,SB} \right) = OH\)

\(B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = a\sqrt 2  \Rightarrow BO = \frac{1}{2}B{\rm{D}} = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông tại \(O \Rightarrow SO = \sqrt {S{B^2} - B{O^2}}  = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông cân tại \(O\) có đường cao \(OH\)

\( \Rightarrow d\left( {AC,SB} \right) = OH = \frac{1}{2}SB = \frac{a}{2}\)

b) \({S_{ABC{\rm{D}}}} = A{B^2} = {a^2}\)

\({V_{S.ABC{\rm{D}}}} = \frac{1}{3}{S_{ABC{\rm{D}}}}.SO = \frac{{{a^3}\sqrt 2 }}{6}\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

b) Ta có ACC' là tam giác vuông có cạnh \(AC=a\sqrt{2},CC'=a\)

Vậy \(AC'^2=AC^2+CC^2\Rightarrow AC'^2=2a^2+a^2=3a^2\)

Vậy \(AC'=a\sqrt{3}\)

25 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có AB = AD = AA′ = a

và C ′ B   =   C ′ D   =   C ′ A ′   =   a 2

Vì hai điểm A và C’ cách đều ba đỉnh của tam giác A’BD nên A và C’ thuộc trục đường tròn ngoại tiếp tam giác BDA’ . Vậy AC′ ⊥ (BDA′). Mặt khác vì mặt phẳng (ACC’A’) chứa đường thẳng AC’ mà AC′ ⊥ (BDA′) nên ta suy ra mặt phẳng (ACC’A’) vuông góc với mặt phẳng (BDA’)

b) Ta có ACC’ là tam giác vuông có cạnh A C   =   a 2 và CC’ = a

 

Vậy A C ′ 2   =   A C 2   +   C C ′ 2  

⇒   A C ′ 2   =   2 a 2   +   a 2   =   3 a 2 .   V ậ y   A C ′   =   a 3 .

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Các đường thẳng vuông góc với \(AC\) là: \(B{\rm{D}},B'D',AA',BB',CC',DD'\).

b) Các đường thẳng chéo với \(AC\) là: \(B'D',BB',DD'\).