Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x_1,1-\frac{1}{x_1-1}\right);N\left(x_2,1-\frac{1}{x_2-1}\right)\)
Theo yêu cầu <=> \(\overrightarrow{AN}=-2\overrightarrow{AM}\)
\(\begin{cases}x_2=2-2x_1\\-\frac{1}{3}-\frac{1}{x_2-1}=2\left(-\frac{1}{3}-\frac{1}{x_1-1}\right)\end{cases}\)
M(0,2) ; N(2,0)
d:y=2-x
B C A D H K J S
Kẻ \(SH\perp AC\left(H\in AC\right)\)
Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)
\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)
\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)
Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)
Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)
Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)
Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)
Bài 14:
Vecto chỉ phương của đường thẳng $d$ là: $\overrightarrow{u_d}=(1; -1; 2)$
Mp $(P)$ vuông góc với $d$ nên nhận $\overrightarrow{u_d}$ là vecto pháp tuyến
Do đó PTMP $(P)$ là:
$1(x-x_M)-1(y-y_M)+2(z-z_M)=0$
$\Leftrightarrow x-y+2z=0$
Đáp án A
Bài 13:
Khi quay tam giác đều ABC quanh cạnh AB thì ta thu được một khối hình là hợp của 2 hình nón (ngược chiều nhau) có cùng bán kính đáy $r$ là đường cao của tam giác đều, tức là $r=\frac{\sqrt{3}}{2}.1=\frac{\sqrt{3}}{2}$ và đường cao là $h=\frac{AB}{2}=\frac{1}{2}$
Thể tích 1 hình nón: $V_n=\frac{1}{3}\pi r^2h=\frac{\pi}{8}$
Do đó thể tích của khối hình khi quay tam giác đều ABC quanh AB là: $2V_n=\frac{\pi}{4}$
Câu 1:
Giải trâu bò: \(m=\frac{x+1}{\sqrt{2x^2+1}}\)
Đặt \(f\left(x\right)=\frac{x+1}{\sqrt{2x^2+1}}\Rightarrow f'\left(x\right)=\frac{\sqrt{2x^2+1}-\frac{\left(x+1\right).2x}{\sqrt{2x^2+1}}}{2x^2+1}=\frac{2x^2+1-2x^2-2x}{\left(2x^2+1\right)\sqrt{2x^2+1}}=\frac{1-2x}{\left(2x^2+1\right)\sqrt{2x^2+1}}\)
\(f'\left(x\right)=0\Rightarrow x=\frac{1}{2}\Rightarrow\) từ BBT ta thấy hàm số đạt cực đại tại \(x=\frac{1}{2}\)
\(\Rightarrow m< f\left(\frac{1}{2}\right)=\frac{\sqrt{6}}{2}\)
Mặt khác ta có:
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\frac{x+1}{\sqrt{2x^2+1}}=lim\frac{1+\frac{1}{x}}{\sqrt{2+\frac{1}{x^2}}}=\frac{\sqrt{2}}{2}\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\frac{x+1}{\sqrt{2x^2+1}}=\lim\limits_{x\rightarrow-\infty}\frac{1+\frac{1}{x}}{-\sqrt{2+\frac{1}{x^2}}}=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow-\frac{\sqrt{2}}{2}< m< \frac{\sqrt{6}}{2}\)
Câu 2:
S A B C G M N P
\(V_{S.ABC}=\frac{1}{6}SA.AB.BC=\frac{1}{6}a^3\)
Qua G kẻ đường thẳng song song BC lần lượt cắt SB, SC tại M và N
Gọi P là trung điểm SC, áp dụng định lý Talet:
\(\frac{PN}{PC}=\frac{PG}{BP}=\frac{1}{3}\Rightarrow\frac{SN}{SC}=\frac{SM}{SB}=\frac{PN+SP}{2SP}=\frac{PN+PC}{2PC}=\frac{2}{3}\)
Áp dụng công thức Simsons:
\(\frac{V_{S.ANM}}{V_{S.ABC}}=\frac{SA}{SA}.\frac{SN}{SC}.\frac{SM}{SB}=1.\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\Rightarrow V_{S.ANM}=\frac{4}{9}V_{SABC}=\frac{2}{27}a^3\)
\(\Rightarrow V_{ABCNM}=V_{SABC}-V_{SANM}=\frac{1}{6}a^3-\frac{2}{27}a^3=\frac{5}{54}a^3\)
a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\) là
Câu 1:
\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:
\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)
\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)
\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)
\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)
\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)
\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)
\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)
Mà \(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)
Câu 2:
Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)
\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)
\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)