OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
🔥OLM: CHUẨN BỊ NĂM HỌC MỚI KHÔNG LO CHẬM NHỊP!
Tham gia chuỗi tập huấn Miễn Phí cho Giáo viên và Nhà trường 2025 từ OLM!
🔥 Lớp học thử cùng giáo viên OLM Class, HOÀN TOÀN MIỄN PHÍ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình lập phương ABCD. A ‘B’C’D’ có độ dài cạnh bằng 1. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, C’D’ và DD’. Tính thể tích khối tứ diện MNPQ
A. 3 8
B. 1 8
C. 1 12
D. 1 24
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD.
P là điểm trên cạnh BC (P không trùng với điểm B và C) và R là điểm trên cạnh CD sao cho \(\frac{BP}{BC}\)\(\ne\)\(\frac{DR}{DC}\)
a) Xác định giao điểm của PR và mp (ABD)
b) Định điểm P trên cạnh BC để thiết diện của tứ diện với mp (MNP) là hình bình hành
giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
Cho hình tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng :
a) \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\)
b) \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)
Cho hình lập phương ABCD.A'B'C'D' tâm O cạnh có độ dài bằng 1. Gọi M, P là 2 điểm sao cho \(\overrightarrow{AM}=\frac{3}{4}\overrightarrow{AA'}\) , \(\overrightarrow{CP}=\frac{1}{4}\overrightarrow{CC'}\) . Mặt phẳng \(\left(\alpha\right)\) thay đổi qua M, P đồng thời cắt 2 cạnh BB' và DD' lần lượt tại N và Q. Tìm GTNN và GTLN của chu vi tứ giác MNPQ ?
Cho tứ diện ABCD có ba cặp cạnh đối diện bằng nhau là AB = CD, AC = BD, AD = BC. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh \(MN\perp AB\) và \(MN\perp CD\). Mặt phẳng (CD) có vuông góc với mặt phẳng (ABN) không ? Vì sao ?
Cho tứ diện ABCD có M, P lần lượt là trung điểm của AB, CD. Gọi N là điểm thuộc BC sao cho BN=3NC, điểm Q thuộc AD sao cho AQ=\(x\)QD. (\(0< x< 1\)) a) Tính \(\overrightarrow{MN}\), \(\overrightarrow{MP}\), \(\overrightarrow{MQ}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\), \(\overrightarrow{AD}\). b) Tìm \(x\) để M, N, P, Q đồng phẳng.
Cho tứ diện ABCD. Qua điểm M nằm trên AC ta dựng một mặt phẳng \(\left(\alpha\right)\) song song với AB và CD. Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P, Q
a) Tứ giác MNPQ là hình gì ?
b) Gọi O là giao điểm hai đường chéo của tứ giác MNPQ. Tìm tập hợp các điểm O khi M di động trên đoạn AC ?
Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC
a) Chứng minh \(AC\perp SD\)
b) Chứng minh \(MN\perp\left(SBD\right)\)
c) Cho AB = SA = a. Tính côsin của góc giữa (SBC) và (ABCD)
Trong không gian cho hai tam giác đều ABC và ABC' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC', C'A. Chứng minh rằng :
a) \(AB\perp CC'\)
b) Tứ giác MNPQ là hình chữ nhật