Cho hình lăng trụ tam giác đều ABC A'B'C' có A B =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

Đáp án A.

Cách 1: Gọi P là giao điểm của  BN và A'B'=>P là trọng tâm Δ A ' B ' B .

Q là giao điểm của CM và A'C'=>Q là trọng tâm  Δ A ' C ' C

⇒ P Q / / B ' C '  Ta có A B ' C ' ∩ B C M N = P Q .

Gọi H là trung điểm của B'C' và I là giao điểm của AH và PQ.

I là trung điểm của PQ.

 

Qua I kẻ đường thẳng vuông góc với BC, cắt BC và MN lần lượt tại J và K

=>J là trung điểm BCK là trung điểm MN.

 

Ta có   A B ' = A C ' ⇒ Δ A B ' C ' cân tại A ⇒ A H ⊥ B C ⇒ A I ⊥ P Q .

Lại có I J ⊥ P Q ⇒  Góc giữa A B ' C ' và   B C M N là góc giữa IJ và IA.

Ta có:

A C ' = A C 2 + C C ' 2 = 2 3 2 + 2 2 = 4

⇒ A H = A C ' 2 − H C ' 2 = 4 2 − 3 2 = 13 ⇒ A I = 2 3 A H = 2 13 3

B N = B B ' 2 + B ' N 2 = 2 2 + 3 2 = 7

K J = N E = B N 2 − E B 2 = 7 − 3 4 = 5 2 ⇒ I J = 2 3 K J = 5 3

Lại có A J = 2 3 . 3 2 = 3

 

Trong  Δ A I J   :

cos A I J ^ = I J 2 + I A 2 − A J 2 2. I J . I A = 25 9 + 4.13 9 − 9 2. 5 3 . 2 13 3 = − 13 65 .

 Cosin của góc giữa A B ' C '  và  B C M N   là  13 65

Cách 2: (Tọa độ hóa)

 

Gọi T là trung điểm AC. Đặt  M = 0 ; 0 ; 0 , B ' 3 ; 0 ; 0 , C ' 0 ; 3 ; 0 , T 0 ; 0 ; 2

⇒ A 0 ; − 3 ; 2 , B 3 ; 0 ; 2 , C 0 ; 3 ; 2 ⇒ M B → = 3 ; 0 ; 2 , M C → = 0 ; 3 ; 2

  n → = M B → , M C → = 2 3 ; 6 ; 6 3 là một vecto pháp tuyến của .

Lại có   A B ' → = 3 ; 3 ; − 2 , A C ' → = 0 ; 2 3 ; − 2

  ⇒ n ' → = A B → , A C → ' = 2 3 ; 6 ; 6 3 là một vecto pháp tuyến của A B ' C ' .

Gọi α  là góc giữa A B ' C '  và M N B C .

Ta có:

cos α = cos n → ; n ' → ^ = − 2 3 .2 3 + − 6 .6 + 3 3 .6 3 − 2 3 2 + − 6 2 + 3 3 2 . 2 3 2 + 6 2 + 6 3 2 = 13 65

 

25 tháng 1 2019

0iid5hdl9Ezb.png

Bài giảng học thử

Video không hỗ trỡ trên thiết bị của bạn!

Bài 2. Kỹ thuật tính Thể tích khối chóp - Phần 3 - Luyện thi THPTQG môn Toán - Thầy Nguyễn Quý Huy - MỤC TIÊU 8+

Gv. Nguyễn Quý Huy - 7.7 Tr lượt xem
19:6

Video không hỗ trỡ trên thiết bị của bạn!

Bài 3. Rút gọn biểu thức - Luyện thi THPT QG môn Toán - Thầy Trần Xuân Trường - Mục tiêu 8+

Gv. Trần Xuân Trường - 368 N lượt xem
14:22

Video không hỗ trỡ trên thiết bị của bạn!

Đề số 6: Bài tập Vận dụng - Phần 1 - Khóa LUYỆN ĐỀ môn TOÁN - Luyện thi THPT QG - Thầy Nguyễn Quý Huy

Gv. Nguyễn Quý Huy - 365.8 N lượt xem
27:35

Video không hỗ trỡ trên thiết bị của bạn!

Bài 5. Bài tập Số phức - Phần 1.5 - Luyện thi THPTQG môn Toán - Thầy Nguyễn Quý Huy - MỤC TIÊU 8+

Gv. Nguyễn Quý Huy - 7 Tr lượt xem
32:32

Video không hỗ trỡ trên thiết bị của bạn!

Bài 6. Kỹ thuật xử lý bài toán Tương giao đồ thị - Phần 2 - Luyện thi THPTQG môn Toán - Thầy Nguyễn Quý Huy - MỤC TIÊU 8+

Gv. Nguyễn Quý Huy - 1.6 Tr lượt xem
10:33
Xem thêm các bài giảng khác »
8 tháng 11 2019

Đáp án B.

Xét hình chữ nhật 

27 tháng 1 2019

Đáp án B

17 tháng 3 2019

Dùng phương pháp tọa độ hóa.

Đặt hệ trục tọa độ, ở đây như thầy đã trình bày ta nên chọn gốc tại P trục Ox, Oy là PA và PC.

Gọi α góc tạo bởi hai mặt phẳng ( AB'C' ) và (MNP)

Khi đó cos α = n 1 → . n 2 → n 1 → . n 2 → = 13 65

Đáp án cần chọn là B

13 tháng 7 2019

Đáp án D

21 tháng 5 2018

Bài 3:

Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)

TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)

\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)

TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)

\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)

Vậy ....

Bài 2:

\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)

\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow A=1-\frac{1}{2009}\)

\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)

\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)

3 tháng 12 2017

Chọn đáp án D.