K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2024

Xet tam giac ABC co 

\(cos60=\dfrac{AB^2+AC^2-BC^2}{2.AB.AC}\Rightarrow BC=\sqrt{3}a\)

\(cosACB=\dfrac{AC^2+BC^2-AB^2}{2.AC.BC}\Rightarrow\widehat{ACB}=30^0\)

Cho H la giao diem giua AG va BC => HC = can3/2 

Xet tam giac AHC 

\(cosACB=\dfrac{AC^2+CH^2-AH^2}{2.AC.CH}\Rightarrow AH=\dfrac{\sqrt{7}a}{2}\)

\(\Rightarrow AG=\dfrac{2}{3}.\dfrac{\sqrt{7}a}{2}=\dfrac{\sqrt{7}a}{3}\)

Ma (AA';A'G) = ^AA'G  = 300

Xet tam giac A'AG vuong tai G 

tanAA'G = \(\dfrac{AG}{A'G}=\dfrac{\sqrt{7}a}{3}:A'G=\dfrac{\sqrt{3}}{3}\Rightarrow A'G=\dfrac{\sqrt{21}a}{3}\)

Xet tam giac ABC 

SABC = \(\dfrac{1}{2}.a.2a.sin60^0=\dfrac{\sqrt{3}}{2}a^2\)

\(V_{ABC.A'B'C}=A'G.S_{ABC}=\dfrac{\sqrt{21}}{3}a.\dfrac{\sqrt{3}}{2}a^2=\dfrac{\sqrt{7}}{2}a^3\)

5 tháng 11 2019

Đáp án B

25 tháng 11 2016

Gọi \(G\) là trọng tâm \(\Delta ABC\) \(\Rightarrow AG\perp\left(ABC\right)\)

\(AG=\frac{a\sqrt{3}}{3}\)

Vì G là hình chiếu của A' trên mp(ABC) nên \(\left(\widehat{AA',\left(ABC\right)}\right)=\widehat{A'AG}=60^O\)

\(A'G=AG.tan\left(\widehat{A'AI}\right)=a\)

Vậy \(V=IA'.S_{ABC}=a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

4 tháng 8 2018

7 tháng 10 2018

Chọn D

15 tháng 8 2017

Chọn B.

 

Gọi M,G lần lượt là trung điểm của BC và trọng tâm G của tam giác ABC.

Do tam giác ABC đều cạnh a nên 

Trong mặt phẳng (AA'M)  kẻ MH ⊥ AA'. Khi đó: 

Vậy MH là đoạn vuông góc chung của AA' và BC nên MH =  a 3 4 .

Trong tam giác AA'G kẻ 

Xét tam giác AA'G vuông tại G ta có: 

Vậy thể tích của khối lăng trụ đã cho là  

 

8 tháng 10 2017

22 tháng 8 2017

Đáp án A

Gọi H là trung điểm của BC, giao điểm của (P) và A A '  là P.

∆ A H P    vuông tại P có  A P = A H 2 - P H 2 = 3 a 4

∆ A A ' O ~ ∆ A H P ⇒ A ' O A O = H P A P

⇒ V A B C . A ' B ' C ' = O A ' . S A B C = a 3 3 12

20 tháng 11 2018

Đáp án C