Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu hỏi của cậu giống toán lớp 9 có phải là toán lowps đâu cậu bảo
Xét \(\Delta\)ABH và \(\Delta\) DAH có
^AHB=^DHA=90(gt)
^BAH=^ADH (cùng phụ với ^DAH)
=> \(\Delta\)ABH~\(\Delta\)DAH(g.g)
=> \(\frac{AH}{DH}=\frac{BH}{AH}\)
=>\(AH^2=DH\cdot BH=9\cdot16=144\)
=> AH=12cm
Xét \(\Delta\)ADH vuông tại H(gt)
=>\(AD^2=HA^2+HD^2\) (theo dl pytago)
=> \(AD^2=9^2+12^2=225\)
=>AD=15cm
Xét \(\Delta\)AHB vuông tại A(gt)
=>\(AB^2=HA^2+HB^2\) (theo đl pytago)
=>\(AB^2=16^2+12^2=400\)
=>AB=20cm
Chu vi cua hình chữ nhật ABCD là:
(AB+AD)*2=(15+20)*2=70cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AB^2=BH*BD <=> AB=15
AD^2=DH*BD <=> AD=20
=> chu vi hình chữ nhật là 2*(15+20) = 70 cm
a, xét \(\Delta MKN\) và \(\Delta QMN\) có
\(\widehat{MKN}=\widehat{MQN}=90^o\)
chung \(\widehat{MNQ}\)
=> \(\Delta MKN\) đồng dạng với \(\Delta QMN\) (g.g)
b, vì MNPQ là hình chữ nhật => MN//NP
=> \(\widehat{MQN}=\widehat{QNP}\) (so le trong)
xét \(\Delta MKQ\) và \(\Delta QPN\) có
\(\widehat{MQN}=\widehat{QNP}\) (cmt)
\(\widehat{MKQ}=\widehat{NPQ=90^o}\)
=> \(\Delta MKQ\) đồng dạng với \(\Delta QPN\) (g.g)
=> \(\frac{MQ}{NQ}=\frac{MK}{QP}\left(đpcm\right)\)
Đặt \(MK=x\left(x>0\right)\)
Áp dụng định lý Pythagoras, ta được: \(x^2+QK^2=MQ^2\Rightarrow x^2=MQ^2-81\)(\(\Delta MKQ\)vuông tại K)
\(x^2+NK^2=MN^2\Rightarrow x^2=MN^2-256\)(\(\Delta MKN\)vuông tại K)
Từ đó suy ra \(2x^2=\left(MN^2+MQ^2\right)-337=NQ^2-337=288\Rightarrow x=12\)(Do x > 0)
\(\Rightarrow MN=\sqrt{12^2+16^2}=20cm\); \(MQ=\sqrt{12^2+9^2}=15cm\)
\(\Rightarrow P_{MNPQ}=\left(20+15\right).2=70\left(cm\right);S_{MNPQ}=20.15=300\left(cm^2\right)\)
b, vì MNPQ là hình chữ nhật => MN//NP
=> ˆMQN=ˆQNPMQN^=QNP^ (so le trong)
xét ΔMKQΔMKQ và ΔQPNΔQPN có
ˆMQN=ˆQNPMQN^=QNP^ (cmt)
ˆMKQ=ˆNPQ=90oMKQ^=NPQ=90o^
=> ΔMKQΔMKQ đồng dạng với ΔQPNΔQPN (g.g)
=> MQNQ=MKQP(đpcm)MQNQ=MKQP(đpcm)