Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F O I M N 1 2 1 1 E' H
mk làm qua nha!
DB//ME nên \(\widehat{M_1}=\widehat{D_1}\)
suy ra \(\widehat{M_1}=\widehat{D_1}=\widehat{D_2}=\widehat{A_1}\)
suy ra AC//DF Mà DO//ME suy ra DOEI là hbh
b, lấy E' là giao của FB và AC
Bằng tính chất đường trung bình chứng minh E' là TĐ của FB (1)
kẻ DH// EF nha ko phải vuông góc đâu
Chứng minh EF=DH=EB(2)
gợi ý: sử dụng t/c hbh DHEF suy ra EF=DH
cm \(\Delta DHO=\Delta BEO\left(g.c.g\right)\)suy ra DH=EB
Từ 1 và 2 suy ra E trùng E' (cùng thuộc AC và EB=EF; E'B=E'F)
suy ra E là TĐ của FB
có gì ko hiểu thì nhắn tin hỏi mk nha!
a) Xét ∆ANE và ∆CNM có:
^ANE = ^CNM (đối đỉnh)
AN = CN (gt)
^EAN = ^MCN (AE//MC, so le trong)
Do đó ∆ANE = ∆CNM (g.c.g)
=> AE = CM (hai cạnh tương ứng)
Mà BM = CM (gt) nên AE = BM
Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)
b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành
∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900
Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)
c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)
∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)
=> AM = 8√3 (cm)
Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)
A B C D N M
a) Ta có :
AB // CD ( Vì ABCD là hcn )
mà N \(\in\) AB
M \(\in\) DC
=) AN // MD
Xét hcn ABCD có :
M là tđ của cạnh DC
NA // MD
=) N là tđ của AB
=) NA = NB
mà AM = MC
lại có : AB = DC ( vì ABCD là hcn )
=) AN = DM
mà AN // DM
=) ANMD là hbh
mà góc M = 90o
=) ANMD là hcn
b)
Ta có : AN = MC ( Vì cx = MD )
mà AN // DC
=) ANCM là hbh
câu c) chút nữa mình làm bn vẽ hình trước