Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải ở đây: https://sites.google.com/site/123onthi/toan8
a: Xét tứ giác AHBI có
N là trung điểm chung của AB và HI
=>AHBI là hình bình hành
b: Gọi K là giao điểm của BH với AC
Xét ΔBAK có
BH là đường cao
BH là đường phân giác
Do đó: ΔBAK cân tại B
Ta có: ΔBAK cân tại B
mà BH là đường cao
nên H là trung điểm của AK
Xét ΔBAK có
H,N lần lượt là trung điểm của AK,AB
=>HN là đường trung bình của ΔBAK
=>HN//BK và \(HN=\dfrac{BK}{2}\)
Ta có: HN//BK
C\(\in\)BK
Do đó: HN//BC
Xét ΔAKC có
H,M lần lượt là trung điểm của AK,AC
=>HM là đường trung bình của ΔAKC
=>HM//KC và \(HM=\dfrac{KC}{2}\)
Ta có: HM//KC
B\(\in\)KC
Do đó: HM//BC
Ta có: HN//BC
HM//BC
HN,HM có điểm chung là H
Do đó: H,N,M thẳng hàng
a: Xét tứ giác MHKD có
\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)
Do đó: MHKD là hình chữ nhật
b: Xét tứ giác ADKB có
\(\widehat{DKB}+\widehat{DAB}=180^0\)
=>ADKB nội tiếp
=>\(\widehat{AKB}=\widehat{ADB}=45^0\)
Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)
nên ΔHAK vuông cân tại H
=>HA=HK
tick cho mình rồi mình lm cho