Cho hình chữ nhật ABCD.Gọi M là trung điểm của AB.Kẻ MN vuông góc với CD tại N....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2023

a: Xét tứ giác AMND có

\(\widehat{MND}=\widehat{ADN}=\widehat{DAM}=90^0\)

=>AMND là hình chữ nhật

b: AMND là hình chữ nhật

=>AM=ND

mà \(AM=\dfrac{AB}{2}\)

nên \(ND=\dfrac{AB}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

nên \(ND=\dfrac{CD}{2}\)

=>N là trung điểm của CD

=>NC=ND

AM=ND

ND=NC

Do đó: AM=NC

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của MN

nên O là trung điểm của AC

AH
Akai Haruma
Giáo viên
24 tháng 10 2023

Lời giải:
a. Vì $ABCD$ là hình chữ nhật nên $\widehat{A}=\widehat{D}=90^0$

$MN\perp CD$ nên $\widehat{MND}=90^0$
Tứ giác $AMND$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{N}$ nên là hcn.

b. 

Hoàn toàn tương tự phần a ta thấy $\widheat{B}=\widehat{C}=\widehat{N}$ nên $BMNC$ là hcn

$\Rightarrow BM=NC$
$AMND$ là hcn nên $AM=DN$

Mà $AM=BM$ nên $AM=NC$
Có $AM\parallel NC$ (do $AB\parallel CD$) và $AM=NC$ nên $AMCN$ là hbh

$\Rightarrow AC, MN$ cắt nhau tại trung điểm mỗi đường.

Mà $O$ là trung điểm $MN$ nên $O$ cũng là trung điểm $AC$.

c.

Vì $AMCN$ là hbh (theo phần b) nên $AN\parallel CM$

$\Rightarrow EN\parallel FC$
$\Rightarrow \frac{DE}{EF}=\frac{DN}{NC}=1$ (theo định lý Talet)

$\Rightarrow DE=EF(1)$

Mặt khác:

$AN\parallel CM$

$\Rightarrow MF\parallel AE$

$\Rightarrow \frac{BF}{EF}=\frac{BM}{MA}=1$ (định lý Talet)

$\Rightarrow BF=EF(2)$

Từ $(1); (2)\Rightarrow DE=EF=BF$

AH
Akai Haruma
Giáo viên
24 tháng 10 2023

Hình vẽ:

NM
10 tháng 1 2021

A B C D M N O

Xét tứ giác AMND có góc \(A=D=M=90^0\), do đó AMND là hình chữ nhật.

do AMND là hình chữ nhật nên \(AM=ND=NC\) mà AM//NC

do đó AMCN là hình bình hành

do đó AC cắt MN tại trung điểm của mỗi đường, do đó ta có đpcm

8 tháng 11 2023

rồi tại sao am song song với nc

 

15 tháng 1 2021

Giải giúp mình bài c thôi cũng được ạ 😢

29 tháng 10 2023

a: Xét tứ giác AMND có

\(\widehat{ANM}=\widehat{MAD}=\widehat{ADN}=90^0\)

=>AMND là hình chữ nhật

b: AMND là hình chữ nhật

=>AM=ND 

mà \(AM=\dfrac{AB}{2}\) và AB=CD

nên DN=DC/2

=>N là trung điểm của CD

AM=MB=AB/2

CN=ND=CD/2

mà AB=CD

nên AM=MB=CN=ND

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của MN

nên O là trung điểm của AC

29 tháng 10 2023

cảm ơn nhiều nha

 

19 tháng 10 2021

a: Xét tứ giác AMND có 

\(\widehat{MAD}=\widehat{ADN}=\widehat{MND}=90^0\)

nên AMND là hình chữ nhật

19 tháng 10 2021

Giải giúp luôn câu b đc ko v 

 

10 tháng 10 2021

1: Xét tứ giác AMND có 

\(\widehat{ADN}=\widehat{DAM}=\widehat{MND}=90^0\)

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

10 tháng 10 2021

Trả lời:

1: Xét tứ giác AMND có 

ˆADN=ˆDAM=ˆMND=900ADN^=DAM^=MND^=900

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

Chúc bạn học tốt nhé.

27 tháng 12 2021

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)

Do đó: ANMP là hình chữ nhật

25 tháng 12 2016

Có vẻ đề của bạn bị sai *_*. Mình có làm đề này rồi nên mình chỉ sửa đề của bạn 1 chút là''Gọi H là chân đường vuông góc kẻ từ điểm A đến BC'' thế thôi, còn lại là đúng. Bây giờ mình sẽ giải cho bạn.

A B C D H I M N

*Mình vẽ không đc đẹp, bạn thông cảm nha*

a/

Ta có, AM=HM và HN=DN(gt)

-> MN là đường trung bình của tam giác AHB

->MN//AD

b/

Ta có, MN // AD ( câu a/) ; AD // AB (tính chất của hình chữ nhật)

-> MN // BI(I nằm trên cạn BC)  (1)

Lại có: MN = 1/2 AD(MN là đường trung bình của tam giác AHB)

Mà BI= 1/2 BC và BC=AD

->MN=BI  (2)

Từ (1) và (2) -> Tứ giác BMNI là hình bình hành

c/

Vì AH vuông góc với BD(gt) VÀ MN vuông góc với AB(vì MN // AD ; AD vuông góc với AB)

-> M là trực tâm của tam giác ABN 

Mà BM // IN 

-> AN vuông góc với IN

hay góc ANI= 90 độ 

-> Tam giác ANI vuông tại N(đpcm)