Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A B C D O M N
Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)
=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)
=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)
=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)
Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)
=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)
Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)
=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)
Từ (1), (2),(3):
=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)
=> MO=NO(dpcm)
CHÚC BẠN HỌC TỐT!
2. A B C D O E F
+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)
\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)
+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)
+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)
\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)
Bài 1:
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MD=BN/NC
b: AM/MD=BN/NC
=>MD/AM=NC/BN
=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)
=>AD/AM=BC/BN
=>AM/AD=BN/BC
c: AM/AD=BN/BC
=>1-AM/AD=1-BN/BC
=>DM/AD=CN/CB
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là phân giác
Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
mà AM là phân giác
nen AEMF là hình thoi
b: Xét ΔABC có ME//AC
nên BE/BA=BM/BC=1/2
=>E là trung điểm của AB
Xét ΔABC có MF//AB
nên CF/CA=CM/CB=1/2
=>F là trung điểm của AC
Xét ΔABC có E,F lần lượtlà trung điểm của AB và AC
nên EF là đường trung bình
=>EF=1/2BC và EF//BC
c: Xét ΔAEM và ΔAFM có
AE=AF
góc EAM=góc FAM
AM chung
Do đó: ΔAEM=ΔAFM
Suy ra: ME=MF
mà AE=AF
nên AM là trung trực của FE
a,\(\Delta ABM\infty\Delta NDA\left(g.g\right)\Rightarrow\frac{AB}{ND}=\frac{BM}{DA}\Rightarrow AB^2=BM.DN\) (vì AB = AD)
b, Ta có: \(\frac{NM}{NA}=\frac{MC}{AD}\Rightarrow\frac{AD}{AN}=\frac{MC}{MN}\)
\(\frac{CN}{AB}=\frac{MN}{AM}\Rightarrow\frac{CN}{AD}=\frac{MN}{AM}\Rightarrow\frac{AD}{AM}=\frac{CN}{MN}\)
Vậy \(\left(\frac{AD}{AM}\right)^2+\left(\frac{AD}{AN}\right)^2=\left(\frac{CN}{MN}\right)^2+\left(\frac{MC}{MN}\right)^2=\frac{MC^2+CN^2}{MN^2}=1\)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
b: Qua A kẻ đường thẳng vuông góc với AP cắt BC tại N
Xét ΔABN và ΔADP có
góc B=góc D=90 độ
góc BAN=góc DAP
=>ΔABN đồng dạng với ΔADP
=>AB/AD=AN/AP=1/3
=>AN=1/3AP
ΔANM vuông tại N có AB là đường cao
nen 1/AB^2=1/AM^2+1/AN^2=1/AM^2+9/AP^2