K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

undefined

Gọi O là giao điểm 2 đường chéo AC và BD, ta có: AO=BO,AO=OD.

Do AO=BO nên AOB là tam giác cân tại O=> góc OAB= góc OBA

Mà IMA=OBA (đồng vị) => góc OAB = góc IMA => tam giác AIM cân tại I => AI=IM. (1)

CMTT ta có AI=IN (2)

Từ (1), (2), ta suy ra đc I là trung điểm MN.

Mà I cũng là trung điểm AH (gt)

=> AMHN là hình bình hành.

Mà góc NAM=900 nên AMHN là hình chữ nhật (đpcm)

Bài mình tự lm nên sẽ có sai xót, bạn kiểm tra lại cho mình nha!!!!!

18 tháng 12 2022

a: Xét ΔOAN và ΔOCM có

góc AON=góc COM

OA=OC

góc OAN=góc OCM

DO đó: ΔOAN=ΔOCM

=>ON=OM

=>O là trung điểm của MN

b: Xét ΔBAC co NF//AC

nên NF/AC=BN/BA=DM/DC

Xét ΔDAC có EM//AC

nên EM/AC=DM/DC=NF/AC

=>EM=NF

mà EM=NF

nên EMFN là hình bình hành

c: Vì EMFN là hình bình hành

nen EF cắt MN tại trung điểm của mỗi đường

=>O là trung điểm của EF

=>MN,EF,AC,BD đồng quy

a, Có: hcn ABCD (gt)

=> AB // CD ( t/c )

     O là trung điểm AC ( t/c ) => OA = OC.

Có: AB // CD ( cmt )

=> AN // MC

=> \(\widehat{NAO}=\widehat{MCO}\left(SLT\right)\)

Xét △ANO và △CMO có:

\(\widehat{NAO}=\widehat{MCO}\left(cmt\right)\)

OA = OC ( cmt )

\(\widehat{AON}=\widehat{COM}\left(đ^2\right)\)

=> △ANO = △CMO ( g.c.g )

=> ON = OM ( 2 cạnh tương ứng )

=> O là trung điểm MN 

=> M và N đối xứng nhau qua O.

b, Có: NF // AC ( gt )

          ME // AC ( gt )

=> NF // ME

=> \(\widehat{EMN}=\widehat{FNM}\left(SLT\right)\)

Có: △ANO = △CMO ( cmt )

=> \(\widehat{ENM}=\widehat{FMN}\left(2gtu\right)\)

Xét △ENM và △FMN có:

\(\widehat{ENM}=\widehat{FMN}\left(cmt\right)\)

MN chung

\(\widehat{EMN}=\widehat{FNM}\left(cmt\right)\)

=> △ENM = △FMN (g.c.g)

=> EM = FN ( 2ctu )

Mà EM // FN ( cmt ) 

=> ENFM là hbh ( dhnb )

Câu cuối không biết làm=)))

17 tháng 11 2021

làm câu b hoi ạ:((((

 

10 tháng 10 2021

1: Xét tứ giác AMND có 

\(\widehat{ADN}=\widehat{DAM}=\widehat{MND}=90^0\)

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

10 tháng 10 2021

Trả lời:

1: Xét tứ giác AMND có 

ˆADN=ˆDAM=ˆMND=900ADN^=DAM^=MND^=900

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

Chúc bạn học tốt nhé.

31 tháng 10 2021

hhi bài mình hoi bẩn sorry nhaundefined

7 tháng 10 2017

hộ cái

17 tháng 11 2021

gấp ạ giúp mình vs

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

b: Xét tứ giác AMNE có 

AM//NE

AM=NE

Do đó: AMNE là hình bình hành

c: Xét ΔAHD có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHE cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE