Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Xét △DMI có: AB//DM.
\(\Rightarrow\dfrac{AB}{DM}=\dfrac{IA}{IM}\) (hệ quả định lí Ta-let)
a. Xét △CMK có: AB//CM.
\(\Rightarrow\dfrac{AB}{CM}=\dfrac{KB}{KM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{AB}{DM}=\dfrac{KB}{KM}\)
-Xét △ABM có: \(\dfrac{IA}{IM}=\dfrac{KB}{KM}\left(=\dfrac{AB}{DM}\right)\)
\(\Rightarrow\)IK//AB (định lí Ta-let đảo).
b) -Xét △ADM có: EI//DM.
\(\Rightarrow\dfrac{EI}{DM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)
-Xét △ACM có: KI//CM.
\(\Rightarrow\dfrac{IK}{CM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{IK}{DM}=\dfrac{AI}{AM}=\dfrac{EI}{DM}\) nên \(IK=EI\).
-Xét △BCM có: KF//CM.
\(\Rightarrow\dfrac{KF}{CM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)
-Xét △BDM có: IK//DM.
\(\Rightarrow\dfrac{IK}{DM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{IK}{CM}=\dfrac{BK}{BM}=\dfrac{KF}{CM}\) nên \(IK=KF\)
-Vậy \(EI=IK=KF\)

Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc EBD=góc EDB
=>EB=ED
Xét tứ giá BEDF có
BE//DF
BF//DE
EB=ED
=>BEDF là hình thoi

1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN

Vì \(ABCD\) là hình bình hành (gt).
=> \(AB\) // \(CD\) và \(AD\) // \(BC\) (định nghĩa hình bình hành).
\(AB\) // \(CD\) => \(AB\) // \(EC.\)
\(AD\) // \(BC\) => \(AF\) // \(BC.\)
+ Xét \(\Delta ABC\) có:
\(AB\) // \(EC\left(cmt\right)\)
=> \(\frac{MB}{ME}=\frac{AM}{MC}\) (định lí Ta - lét) (1).
+ Xét \(\Delta AFB\) có:
\(AF\) // \(BC\left(cmt\right)\)
=> \(\frac{MF}{MB}=\frac{AM}{MC}\) (định lí Ta - lét) (2).
Từ (1) và (2) \(\Rightarrow\frac{MB}{ME}=\frac{MF}{MB}.\)
=> \(MB.MB=ME.MF\)
=> \(MB^2=ME.MF\left(đpcm\right).\)
Chúc bạn học tốt!
nếu BM\(\perp\)CD thì M trùng D mất rồi bạn ạ