\(\perp\) AC . Gọi M và N lần lượt là trung điểm của BC và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
10 tháng 8 2019

a) + Ta có : ΔADE ∼ ΔDCE ( g.g )

\(\Rightarrow\frac{S_{ADE}}{S_{DCE}}=\frac{AD^2}{CD^2}=\frac{BC^2}{AB^2}\)

+ Ta lại có : \(\frac{S_{ADE}}{S_{DCE}}=\frac{AE}{CE}\Rightarrow\frac{AE}{CE}=\frac{BC^2}{AB^2}\)

b) Gọi I là trung điểm của DE

+ NI là đg trung bình của ΔADE

\(\Rightarrow\left\{{}\begin{matrix}NI//AD\\NI=\frac{1}{2}AD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}NI//MC\\NI=CM\end{matrix}\right.\)

=> Tứ giác ICMN là hbh

=> MN // CI

+ NI // AD => NI ⊥ CD

+ ΔCND có 2 ddg cao DE và NI cắt nhau tại I

=> I là trực tâm ΔCDN

=> CI ⊥ DN => MN ⊥ DN

+ ΔDMN vuông tại N

\(\Rightarrow DN^2+MN^2=DM^2\)

+ ΔDMC vuông tại C

\(\Rightarrow CD^2+CM^2=DM^2\)

\(\Rightarrow MN^2+DN^2=CD^2+CM^2\)

Y
10 tháng 8 2019

https://hoc24.vn/hoi-dap/question/427120.html

Bn tham khảo nhé!