Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N H I
Kẽ NI // BC
\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)
\(\Rightarrow\)MI // BH
\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)
Tứ giác IBCN có
\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)
\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật
\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)
Xét tứ giác IMCB có
\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\
\(\widehat{IBC}=90\)
\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn
\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB)
Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)
\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)
\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn
Hay M,B,C,N cùng nằm trên một đường tròn
A B D C M N H O I E F G K J
a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)
Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)
Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)
Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD
b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.
Trước hết, ta chứng minh GK//MN.
Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\)
Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)
Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)
Theo định lý Ta lét đảo, suy ra GK//MN.
Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành
Vậy thì J là trung điểm của EK.
Xét tam giác OGK có EF // GK nên ta có :
\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)
Ta cũng có GK//MN nên :
\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2