\(\perp\) BD ( H \(\in\) BD )
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

a)  Xét  \(\Delta HAD\) và    \(\Delta ABD\)  có:

      \(\widehat{AHD}=\widehat{BAD}=90^0\)

     \(\widehat{BDA}\)  chung

suy ra:    \(\Delta HAD~\Delta ABD\)

b)   Áp dụng định lý Pytago ta có:

     \(BD^2=AD^2+AB^2\)

\(\Leftrightarrow\)\(BD^2=15^2+20^2=625\)

\(\Leftrightarrow\)\(BD=\sqrt{625}=25\)cm

    \(\Delta HAD~\Delta ABD\)  \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AD}{BD}\) \(\Rightarrow\) \(AH=\frac{AB.AD}{BD}\)

hay      \(AH=\frac{20.15}{25}=12\)

P/s: tính AH áp dụng ngay hệ thức lượng cx đc

29 tháng 3 2018

Bạn tự vẽ hình nha!

a, Xét \(\Delta HAD\)\(\Delta ABD\) có:

Góc AHD = Góc DAB ( = 90 độ)

Góc ADB chung

=> \(\Delta HAD\) đông dạng\(\Delta ABD\) (g-g)

b, Xét \(\Delta ABD\) vuông tại A có :

\(BD^2=AB^2+AD^2=20^2+15^2=625\)

\(\Rightarrow BD=\sqrt{625}=25\)

Ta có: \(\Delta HAD\) đồng dạng \(\Delta ABD\) (theo câu a)

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\Rightarrow AH=12\)

c, Xét \(\Delta HDA\)\(\Delta HAB\) có:

\(\widehat{AHD}=\widehat{AHB}=90^0\)

\(\widehat{ADH}=\widehat{BAH}\) (cùng phụ với góc DAH )

\(\Rightarrow\Delta HDA\) đồng dạng \(\Delta HAB\) (g - g)

\(\Rightarrow\dfrac{AH}{HB}=\dfrac{HD}{AH}\Rightarrow AH^2=HB.HD\)

20 tháng 4 2018

hình bạn tự vẽ nhá

a) Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

b) ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)

=> AH = 9,6 cm

Ta có : AD là phân giác của A^

=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)

=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)

=> 16BD = 240 - 12BD

=> 28BD = 240

=> BD = 8,5 cm

5 tháng 3 2019

hình bạn tự vẽ ak nghen!!!

a)

Xét tam giác ABC và HBA có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)

Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)

Từ (1) và (2) suy ra MN/AD=MH/AC

hay MN/MH=AD/AC