K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

1)
H là trực tâm của tam giác ABC => BH vuông góc với AC
Mà DC lạ vuông góc với AC(gt)
=> BH song song DC (1)
H là trực tâm của tam giác ABC => CH vuông góc với AB
Mà DB lạ vuông góc với AB(gt)
=> CH song song DB (2)
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD
=> BHCD là hình bình hành.

2) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường
=> M cũng là trung điểm của HD
mà O là trung điểm của AD
=> OM là đường trung bình tam giác ADH
=> OM = 1/2AH (dpcm)
3) và OM//AH
mà AH vuông góc BC
=> OM vuông góc với BC
gọi I là giao điểm của AM và OH
do AH//OM (cùng vuông góc BC)
=> tam giác IAH đồng dạng IMO
=> IA/IM = AH/OM = 2OM/OM = 2
=> điểm I thuộc trung tuyến AM và cách A một khoảng như trọng tâm G
=> I trùng G
vậy H,G,O thẳng hàng

16 tháng 3 2020

A B C D H I M N O

a, xét tứ giác ADMN có : ^NAD = ^ADM = ^ANM = 90

=> ADMN là hình chữ nhật

b, có M là trung điểm của DC (gt)

I là trung điểm của CH (gt)

=> MI là đường trung bình của tam giác DHC (đn)

=> MI // DH (tc)

DH _|_ AC (gt)

=> MI _|_ AC

c, gọi AM cắt DM tại O 

ANMD là hình chữ nhật (câu a)

=> AM = DN (tc)             (1) và O là trung điểm của AM (tc)

xét tam giác AIM vuông tại I

=> IO = AM/2 và (1)

=> IO = DN/2

=> tam giác DNI vuông tại I (đl)

16 tháng 3 2020

 a,  xét tứ giác ADMN có

góc A =góc D = 90 độ ( DH nhận biết hcn )

góc N = 90 độ ( gt )

=>Tứ giác ADMN là hcn ( tứ giác có 3 góc vuông)

b,     Xét tam giác CHD có:

CI=IH ( gt )   ;    CM=MD ( gt )

=>MI là đường TB của tam giác CDH    => MI // DH ( tc đg tb )

   Mà DH vuông góc vs AC       =>     MI vuông góc vuông

c, tự làm nhé

11 tháng 11 2018

Bài giải
a, + I là trung điểm BC nên BI=IC=BC2=2a:2=a=AB=CDBI=IC=BC2=2a:2=a=AB=CD

+ CM: ABI=DCI△ABI=△DCI (cgc)

~~> AI=DIAI=DI (2 cạnh tương ứng) ~~> IAD△IAD cân ở I ~~> A1ˆ=D1ˆA1^=D1^ (1)

IAD△IAD có Hk là đường trung bình nên HK // AD (2)

+ Từ (1) và (2) ta có AHKDAHKD là hình thang cân 

b, + ABI△ABI vuông ở B theo pytago có BI2+BA2=AI2BI2+BA2=AI2. Hay AI2=2a2AI=2a2=DIAI2=2a2⟹AI=2a2=DI (theo phần a AI=DI)

+ H là trung điểm AI nên : AH=AI2=2a22AH=AI2=2a22 

+ Tương tự có KD=2a22KD=2a22

+ Ta có AD=BC=2aAD=BC=2a

+ HK là đường trung bìnhIAD△IAD nên HK=AD2=aHK=AD2=a

+ Chu vi hình thang HKDA là KD+DA+AH+HD=2a22+2a22+a+2a=2a2+3a