K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SAD) ∩ (SBC) = Sx

Và Sx // AD // BC.

b) Ta có: MN // IA // CD

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

(G là trọng tâm của ∆SAB) nên 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ GN // SC

SC ⊂ (SCD) ⇒ GN // (SCD)

c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)

MN // CD ⇒

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

18 tháng 3 2016

A A B D C H N M  

Ta cần chứng minh \(\overrightarrow{MN}.\overrightarrow{AM}=0\)

Đặt \(\frac{BM}{MH}=\frac{CN}{ND}=k\), khi đó \(\overrightarrow{MB=}-k\overrightarrow{MH}\) , \(\overrightarrow{NC=}-k\overrightarrow{ND}\)

Suy ra \(\left(1+k\right)\overrightarrow{AM}=\overrightarrow{AB}+k\overrightarrow{AH}\)

và \(\left(1+k\right)\overrightarrow{MN}=\overrightarrow{BC}+k\overrightarrow{HD}\)

Suy ra :

\(\left(1+k\right)^2\overrightarrow{MN}.\overrightarrow{AM}=k\left(\overrightarrow{AB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{HB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{-AH^2}+\overrightarrow{AH}.\overrightarrow{AD}\right)\)

                               \(=k\overrightarrow{AH}.\overrightarrow{HD}=0\)

Suy ra điều phải chứng minh

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)

\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)

23 tháng 1 2018

Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?

NV
1 tháng 5 2019

S A B C D H M N O

Cần câu d thôi đúng ko bạn?

\(ID\) cắt (SAC) tại A mà \(IA=2DA\Rightarrow d\left(I;\left(SAC\right)\right)=2d\left(D;\left(SAC\right)\right)\)

\(BD\) cắt (SAC) tại O mà \(OB=OD\Rightarrow d\left(D;\left(SAC\right)\right)=d\left(B;\left(SAC\right)\right)\)

Mặt khác \(BA=2HA\Rightarrow d\left(B;\left(SAC\right)\right)=2d\left(H;\left(SAC\right)\right)\)

\(\Rightarrow d\left(I;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HM\perp AC\), từ H kẻ \(HN\perp SM\Rightarrow HN=d\left(H;\left(SAC\right)\right)\)

Áp dụng hệ thức lượng: (chú ý rằng \(AH=\frac{AB}{2}=\frac{a}{2};OH=\frac{AD}{2}=\frac{a\sqrt{2}}{2}\))

\(\frac{1}{HM^2}=\frac{1}{AH^2}+\frac{1}{OH^2}\Rightarrow HM=\frac{AH.OH}{\sqrt{AH^2+OH^2}}=\frac{a\sqrt{6}}{6}\)

\(\frac{1}{HN^2}=\frac{1}{SH^2}+\frac{1}{HM^2}\Rightarrow HN=\frac{SH.HM}{\sqrt{SH^2+HM^2}}=\frac{a\sqrt{57}}{19}\)

\(\Rightarrow d\left(I;\left(SAC\right)\right)=\frac{4a\sqrt{57}}{19}\)

1 tháng 5 2019

cho em hỏi gửi câu hỏi lên sao vậy ạ.