Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
IH vuông góc AB => ^AHI = 90
IK vuông góc AD => ^AKI = 90
=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp
b/ Xét tam giác ADI và tam giác BCI có
^AID=^BIC (góc đối đỉnh)
sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC
=> tg ADI đồng dạng tg BCI
=>\(\frac{IA}{IB}=\frac{ID}{IC}\)⇒IA.IC=IB.ID
c/
Xét tứ giác nội tiếp AHIK có
^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)
^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)
Xét tứ giác nội tiếp ABCD có
^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)
^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)
Xét hai tam giác HIK và tam giác BCD
Từ (1) và (3) => ^HIK = ^BCD
Từ (2) và (4) => ^KHI = ^DBC
=> tam giác HIK đồng dạng với tam giác BCD
M B C D A H K
Kẻ BH và DK cùng vuông góc với AI.
Ta có \(\widehat{HIB}=\widehat{KAD}\) (so le trong) nên \(\Delta HIB\sim\Delta KAD\left(g-g\right)\)
\(\Rightarrow\frac{BH}{DK}=\frac{BI}{AD}=\frac{BI}{BC}=\frac{1}{2}\)
Lại có: \(S_{ABM}=\frac{1}{2}.m.BH\Rightarrow BH=\frac{2b}{m}\)
Tương tự \(DK=\frac{2d}{m}\)
Suy ra d = 2b hay \(d^2=4b^2.\).
Gọi độ dài cạnh của hình vuông ABCD là a thì BI = a/2.
Xét tam giác vuông ABI, đường cao BH ta có: \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BI^2}\Rightarrow\frac{1}{\left(\frac{2b}{m}\right)^2}=\frac{1}{a^2}+\frac{1}{\left(\frac{a}{2}\right)^2}\)
\(\Leftrightarrow\frac{m^2}{4b^2}=\frac{5}{a^2}\Rightarrow a^2=\frac{4.5b^2}{m^2}=\frac{4}{m^2}\left(4b^2+b^2\right)=\frac{4}{m^2}\left(d^2+b^2\right)\)
Vậy \(S_{ABCD}=\frac{4}{m^2}\left(d^2+b^2\right).\)
A B C D P Q H
a) Xét tam giác BHP và tam giác CHB có: \(\widehat{HPB}=\widehat{HBC}\)( cùng phụ góc PBH) (1)
và \(\widehat{PHB}=\widehat{BHC}\left(=90^o\right)\)
=> tam giác BHP ~ tam giác CHB
=> \(\frac{BH}{HC}=\frac{BP}{BC}\Leftrightarrow\frac{BH}{HC}=\frac{BQ}{DC}\)( vì BP=BQ, BC=DC)
Ta lại có : \(\widehat{HPB}=\widehat{HCD}\) ( so le trong) (2)
Từ (1) , (2) => \(\widehat{HBC}=\widehat{HCD}\) => \(\widehat{HBQ}=\widehat{HCD}\)
Xét tam giác HBQ và tam giác HCD có:
\(\frac{BH}{HC}=\frac{BQ}{DC}\); \(\widehat{HBQ}=\widehat{HCD}\)
=> tam giác HBQ ~tam giác HCD
b) Có: tam giác HBQ ~tam giác HCD ( theo a)
=> \(\widehat{DHC}=\widehat{QHB}\)
mà \(\widehat{QHB}+\widehat{QHC}=\widehat{BHC}=90^o\)
=> \(\widehat{DHC}+\widehat{QHC}=\widehat{DHQ}=90^o\)