Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2 tam giác vuông đó có: (ADB)=(CBD) (cùng phụ với góc BDC)
b, AH.BD=AD.AB vì bằng 2 lần diện tích tam giác ADB.
c, Áp dụng hệ thức lượng trong tam giác vuông tính được AH.
Biết AH, BD tính được S tam giác.
A B C D H
a) Xét △AHD và △BCD có :
\(\widehat{H}=\widehat{D}=\left(90^o\right)\)
\(\widehat{D}=\widehat{B}\)(slt)
\(\Rightarrow\)△AHD ~ △BCD (g.g)
b) Xét △AHB và △DAB có :
\(\widehat{B}\)là góc chung
\(\widehat{A}=\widehat{H}=\left(90^o\right)\)
\(\Rightarrow\)△AHB ~ △DAB (g.g)
\(\Rightarrow\)\(\frac{AH}{AD}=\frac{AB}{BD}\)
\(\Rightarrow AH.BD=AD.AB\)(ĐPCM)
A B C D H 8cm 6cm
Giải
a) Xét\(\Delta AHB\)và\(\Delta BCD\)có:
\(\widehat{AHB}=\widehat{BCD}=90^o\)
\(\widehat{ABH}=\widehat{BDC}\) (so le trong)
=>\(\Delta AHB~\Delta BCD\) (g.g)
b) Xét\(\Delta AHD\)và\(\Delta AHB\)có:
\(\widehat{AHD}=\widehat{BHA}=90^o\)
\(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))
=>\(\Delta AHD~\Delta AHB\) (g.g)
Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)
Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)
c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:
\(BD^2=BC^2+DC^2\)
\(BD^2=6^2+8^2\)
\(BD^2=36+64\)
\(BD=\sqrt{100}=10\left(cm,BD>0\right)\)
Xét tam giác vuông ABD có:
\(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)
Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:
\(AB^2=AH^2+HB^2\)
\(8^2=4,8^2+HB^2\)
\(HB^2=8^2-4,8^2\)
\(HB^2=40,96\)
\(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)
=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)
Còn HC bn tự tính nhé!
#hoktot<3#
a)
vì ABCD hình chữ nhật nên ta có AB//CD
=> góc ABH= góc BDC ( so le trong, AB//CD)
xét tam giác AHB,BCD có
góc A= góc C =90
góc ABH=BDC(cmt)
=> tam giác AHB đồng dạng với tam giác CDB (gg)
b)
vì ABCD hcn nên
AB=CD=12
BC=AD=9
AD Đlí pytado cho tam giác vuông CDB có
BD2=BC2+DC2
BD2=81+144
BD=15cm
theo câu a) ta có
AH/AB=BC/BD
=> AH= AB.BC chia BD
AH= 12.9 chia 15
AH= 7.2CM
C)
BD
A B C D H K
a) Xét tam giác BDC và HBC có:
góc DCB chung; góc BHC = DBC (= 90o)
=> tam giác BDC đồng dạng HBC (g - g)
b) => \(\frac{BC}{HC}=\frac{DC}{BC}\Rightarrow HC.DC=BC^2\Rightarrow HC=\frac{BC^2}{DC}=\frac{15^2}{25}=\frac{225}{25}=9\)cm
HD = CD - HC = 25 - 9 = 16 cm
c) Áp dụng ĐL Pi ta go trong tam giác vuông BHC có: BH2 = BC2 - CH2 = 225 - 81 = 144 => BH = 12 cm
Kẻ AK vuông góc với CD tại K
Tam giác ADK = BCH (do cạnh huyền AD = BC; góc ADK = BCH)
=> DK = CH = 9 cm
Dễ có: tứ giác ABHK là hình bình hành => AB = HK = CD - CH - DK = 25 - 9 - 9 = 7 cm
S ABCD = (AB + CD) . BH : 2 = (7 + 25) . 12 : 2 = 192 cm vuông