K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

A là giao điểm AB và AD nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-2y+3=0\\2x+y-4=0\end{matrix}\right.\) \(\Rightarrow A\left(1;2\right)\)

Đường thẳng AD nhận \(\left(2;1\right)\) là 1 vtpt

Do B thuộc AB nên tọa độ B có dạng \(B\left(2b-3;b\right)\) \(\Rightarrow\overrightarrow{CB}=\left(2b-7;b-1\right)\)

\(BC//AD\Leftrightarrow2\left(2b-7\right)+1\left(b-1\right)=0\Rightarrow b=3\)

\(\Rightarrow B\left(3;3\right)\) \(\Rightarrow\overrightarrow{BC}=\left(1;-2\right)\)

\(\overrightarrow{BC}=\overrightarrow{AD}\Rightarrow D\left(2;0\right)\)

16 tháng 6 2017

Đáp án B

 => Đường thẳng AB có pt là: x- y – 5= 0.

Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).

Ta có: 

Vậy C( 1 ; -1) và  C( -2 ; 10)

14 tháng 11 2018

Vì hình bình hành ABCD có tâm I => I là trung điểm của AC và BC

Vì I là trung điểm AC

=> \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}\\y_I=\dfrac{y_A+y_C}{2}\end{matrix}\right.\)

=> xA = -2; yA = 5 => A(-2; 5)

Tương tự ta có D(7; 1)

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7) A. x =t ; y =-7 B. x=t ; y =7 C. x=t ; y = -7-t D. x = 3-7t; y = 1-7t 31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1). A. 3x - 2y +5 =0 B. 3x - 2y -5=0 C. 3x +2y +1 =0 D. 3x +2y -1=0 32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 :...
Đọc tiếp

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7)

A. x =t ; y =-7

B. x=t ; y =7

C. x=t ; y = -7-t

D. x = 3-7t; y = 1-7t

31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1).

A. 3x - 2y +5 =0

B. 3x - 2y -5=0

C. 3x +2y +1 =0

D. 3x +2y -1=0

32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 : 5x -2y +4=0 đồng thời sống song với đg thẳng d3 : 2x - y +4=0

A. 2x - y + 30/19 =0

B. 2x -y - 30/19=0

C. x +2y + 30/19=0

D. x +2y - 30/19=0

33. Trong mặt phẳng toạ độ Oxy , cho tg ABC với A(-1;2), B(1;1) , C(2;-1) . Viết pt tổng quát đg cao AH của tg ABC.

A. AH : x -2y +3=0

B. AH: 2x +y =0

C. AH : x -2y +5=0

D. AH: 2x - y +4 =0

34. Cho tg ABC có toạ độ các đỉnh là A(-1;1) và B(4;7) , C( 3;-2), M là trung điểm của đoạn thẳng AB. Viêt pt tham số của đg thẳng CM.

A. x = 3+t ; y = -2-4t

B. x = 3+t ;y = -2 + 4t

C. x = 3-t ; y = 4+2t

D. x = 3+3t ; y = -2+4t

2
NV
11 tháng 4 2020

Câu 32:

Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:

\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)

Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d:

\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)

Câu 33:

\(\overrightarrow{BC}=\left(1;-2\right)\)

Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình AH:

\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)

Câu 34:

Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)

\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)

Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)

NV
11 tháng 4 2020

Câu 30:

\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp

Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)

Cả 4 đáp án đều ko chính xác

Câu 31:

Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)

\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt

Phương trình:

\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)

14 tháng 4 2017

Đáp án B

Gọi hình bình hành là ABCD

d:x+ y-1 = 0, : 3x – y+ 5= 0  .

Không làm mất tính tổng quát giả sử

 

Ta có :  I(3;3)  là tâm hình bình hành nên C(7;4)  

=> Đường thẳng ACcó pt là: x- 4y + 9= 0.

Do  => Đường thẳng BC đi qua điểm C và có vtpt  có pt là: 3x – y- 17= 0.

Khi đó :

Ta có:

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Câu 1: Chưa đủ dữ kiện để làm. Bạn xem lại đề. 

Câu 2: Gọi tọa độ điểm H(a,b)

Ta có: \(\overrightarrow{AH}=(a-3; b-2); \overrightarrow{BC}=(1;8); \overrightarrow{BH}=(a-4; b+1); \overrightarrow{AC}=(2; 5)\)

Vì H là trực tâm tam giác ABC nên:

\(\left\{\begin{matrix} \overrightarrow{AH}.\overrightarrow{BC}=0\\ \overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a-3+8(b-2)=0\\ 2(a-4)+5(b+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+8b=19\\ 2a+5b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{-71}{11}\\ b=\frac{35}{11}\end{matrix}\right.\)

NV
18 tháng 4 2020

d/ Gọi P là trung điểm AB \(\Rightarrow P\left(3;\frac{1}{2}\right)\)

Trung trực của AB vuông góc AB nên nhận (2;1) là 1 vtpt

Phương trình trung trực AB:

\(2\left(x-3\right)+1\left(y-\frac{1}{2}\right)=0\Leftrightarrow4x+2y-13=0\)

Trung trực AC qua N và vuông góc AC nên nhận \(\left(1;-2\right)\) là 1 vtpt

Pt trung trực AC:

\(1\left(x-\frac{3}{2}\right)-2\left(y-1\right)=0\Leftrightarrow2x-4y+1=0\)

Tâm đường tròn ngoại tiếp là giao điểm 2 trung trực nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}4x+2y-13=0\\2x-4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

e/ \(AB=\sqrt{5}\) ; \(AC=\sqrt{5}\) ; \(BC=\sqrt{10}\)

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A

\(\Rightarrow cosB=\frac{AB}{BC}=\frac{\sqrt{5}}{\sqrt{10}}=\frac{1}{\sqrt{2}}\Rightarrow B=45^0\)

NV
18 tháng 4 2020

b/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{5}{2};\frac{3}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{1}{2};\frac{3}{2}\right)=\frac{1}{2}\left(1;3\right)\)

\(\Rightarrow\) Đường thẳng AM nhận \(\left(3;-1\right)\) là 1 vtpt

Phương trình AM:

\(3\left(x-2\right)-1\left(y-0\right)=0\Leftrightarrow3x-y-6=0\)

c/N là trung điểm AC nên \(N\left(\frac{3}{2};1\right)\)

Đường thẳng MN song song BC nên nhận \(\left(1;3\right)\) là 1 vtpt

Phương trình MN:

\(1\left(x-\frac{3}{2}\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-\frac{9}{2}=0\)

11 tháng 4 2020

Gọi M là trung điểm BC . Ta có :

\(\left\{{}\begin{matrix}x_M=\frac{x_B+x_C}{2}=\frac{1+3}{2}=2\\y_M=\frac{y_B+y_C}{2}=\frac{2-4}{2}=-1\end{matrix}\right.\Rightarrow M\left(2;-1\right)\)

\(\overrightarrow{u_{AM}}=\left(2;-2\right)\Rightarrow\overrightarrow{n_{AM}}=\left(2;2\right)\)

PTTQ của AM : \(2\left(x-0\right)+2\left(y-1\right)=0\)

\(\Leftrightarrow x+y-1=0\)

Chọn A