Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: ta có: \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FE}=\overrightarrow{AE}+\overrightarrow{CB}+\overrightarrow{FD}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FE}+\overrightarrow{EA}=\overrightarrow{CB}+\overrightarrow{FD}+\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FA}=\overrightarrow{CB}+\overrightarrow{FC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{FC}-\overrightarrow{FA}\)
\(\Leftrightarrow\overrightarrow{AC}=\overrightarrow{AC}\)(đúng)
Lời giải:
Trên tia đối tia $CB$ lấy $N$ sao cho $CB=CN$
\(|\overrightarrow{MC}+\overrightarrow{BC}|=|\overrightarrow{MC}+\overrightarrow{CN}|=|\overrightarrow{MN}|\)
Xét tam giác $BMC$ và $ADI$ có:
$\widehat{B}=\widehat{A}=90^0$
$\widehat{D}=\widehat{M}$ (cùng bù $\widehat{AMC})$
Do đó 2 tam giác này đồng dạng
$\Rightarrow \frac{BM}{BC}=\frac{AD}{AI}$
$\Rightarrow BM=BC.\frac{AD}{AI}=\frac{2BC^2}{AB}=\frac{3\sqrt{2}a}{4}$
$BN=2BC=a\sqrt{3}$
Do đó, áp dụng định lý Pitago:
$|\overrightarrow{MN}|=MN=\sqrt{BM^2+BN^2}=\frac{\sqrt{66}a}{4}$
Ta có : \(\widehat{AOD}=\widehat{BOC}\) (hai góc đối đỉnh)
\(\Rightarrow\widehat{DAO}=\widehat{BOC}\) (so le trong)
\(\Rightarrow\Delta BOC=\Delta AOD\Rightarrow S_{BOC}=S_{AOD}\)
Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}y-2=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{1}{2};2\right)\)
\(S_{CDE}=\dfrac{1}{2}S_{ABCD}=9\Rightarrow S_{ABCD}=18\)
\(\Rightarrow S_{ADE}=\dfrac{1}{2}AD.AE=\dfrac{1}{8}AD.AB=\dfrac{1}{8}S_{ABCD}=\dfrac{9}{4}\Rightarrow AD.AE=\dfrac{9}{2}\)
Gọi \(A\left(a;2\right)\) và \(D\left(d;2d+3\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(a+\dfrac{1}{2};0\right)\\\overrightarrow{AD}=\left(d-a;2d+1\right)\end{matrix}\right.\)
\(AB\perp AD\Rightarrow\overrightarrow{EA}.\overrightarrow{AD}=0\Rightarrow\left(a+\dfrac{1}{2}\right)\left(d-a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-\dfrac{1}{2}\left(loại\right)\\a=d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AE=\left|d+\dfrac{1}{2}\right|\\AD=\left|2d+1\right|\end{matrix}\right.\)
\(AE.AD=\left|\left(d+\dfrac{1}{2}\right)\left(2d+1\right)\right|=\dfrac{9}{2}\)
\(\Leftrightarrow\left(2d+1\right)^2=9\Rightarrow\left[{}\begin{matrix}d=1\left(loại\right)\\d=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-2;2\right)\\D\left(-2;-1\right)\end{matrix}\right.\)
\(\overrightarrow{AB}=4\overrightarrow{AE}\Rightarrow\)tọa độ B
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ C
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)
\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)
\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)
\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)
\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)
\(\Rightarrow M\) là trung điểm OA