Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: BD=căn 9^2+12^2=15cm
AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD
nên NP//AD và NP=AD/2
=>NP//BC và NP=BC/2
=>NP//BM và NP=BM
=>BNPM là hình bình hành
a: AC=15cm
\(S_{ABCD}=DC\cdot AD=9\cdot12=108\left(cm^2\right)\)
b: Xét ΔHAD có
M là trung điểm của HA
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//AD và MN=AD/2
=>MN//CP và MN=CP
hay MNCP là hình bình hành
a) Xét tam giác AHD, có:
* M,N lần lượt là trung điểm của AH, DH (gt)
=> MN là đường trung bình của tam giác AHD
=> MN // AD (t/c) (đpcm)
b) Ta có: BC // AD (ABCD là hình chữ nhật)
=> MN // BI (I thuộc BC) (1)
Ta lại có: I là trung điểm BC (gt)
=> BI = AD : 2 (BC = AD)
Mà MN = AD :2 (MN là đường trung bình tam giác AHD)
=> BI = MN (2)
Từ (1), (2) => MBIN là hình bình hành (đpcm)
c) Xét tam giác AHN vuông tại N có:
* NM là trung tuyến (M là trung điểm AH)
=> NM = MA = MH (hệ quả)
=> tam giác AMN là tam giác cân tại M
Mà MB là đường nối từ đỉnh của tam giác cân AMN
=> MB là đường cao của tam giác AMN
=> góc AMB = 90 độ
=> AD vuông góc với MB
Mà MB // ID (MDIB là hình bình hành)
=> ID vuông góc với AD
=> góc ANI = 90 độ
P/S: Không chắc câu c) cho lắm.