Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x+\dfrac{1}{2}=x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{2}\\ =\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}+\dfrac{1}{2}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
ta có: \(\left(x-\dfrac{1}{2}^{ }\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}>0\forall x\left(vì\dfrac{1}{4}>0\right)\)
hay \(x^2-x+\dfrac{1}{2}>0\forall x\)
a, \(4x+6y-x^2-y^2+2\)
\(=-\left(x^2+y^2-4x-6y-2\right)\)
\(=-\left(x^2-2x-2x+4+y^2-3y-3y+9-15\right)\)
\(=-\left[\left(x^2-2x\right)-\left(2x-4\right)+\left(y^2-3y\right)-\left(3y-9\right)-15\right]\)
\(=-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2-15\ge-15\)
\(\Rightarrow-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\le15\)
Để \(-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]=15\) thì \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy GTLN của biểu thức là 15 đạt được khi và chỉ khi \(x=2;y=3\)
Câu b làm tương tự! Chúc bạn học tốt!!!
Thui đang chán không có bài :) làm lun:
b, \(-x^2-4y^2-z^2+2x+12y-4z-10\)
\(=-\left(x^2+4y^2+z^2-2x-12y+4z+10\right)\)
\(=-\left(x^2-x-x+1+4y^2-6y-6y+9+z^2+2z+2z+4-4\right)\)
\(=-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\)
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\left(x-1\right)^2\ge0;\left(2y-3\right)^2\ge0;\left(z+2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\ge-4\)
\(\Rightarrow-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\le4\)
với mọi giá trị của \(x;y;z\in R\).
Để \(-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]=4\) thì
\(\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y-3\right)^2=0\\\left(z+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Vậy .....
Chúc bạn học tốt!!!
Bạn xem lại đề nhé!
Đặt góc BDC = y , góc ADB = x thì góc DBC = 2x , góc ABD = 2y
Ta có : Góc ABC = góc ABD + góc DBC = 2x+2y = 2(x+y) = 2*góc ADC
Trong tam giác ABC : góc BAC = góc BCA = (180 độ - 2x-2y)/2 = 90 độ -x -y
Trong tam giác BCD : góc BCD = 180 độ - 2x -y
=> góc ACD = góc BCD - góc BCA = (180 độ -2x-y) - (90 độ -x -y) = 90 độ -x
Tương tự với tam giác ABD có góc CAD = (180 độ -2y-x)-(90 độ -x-y)
= 90 độ - y
Ta chưa có điều kiện x = y do vậy góc ACD khác góc CAD nên đề sai.
\(\sqrt{6}+\sqrt{6}+\sqrt{6}+...+\sqrt{6}=n\sqrt{6}\)(n là số số hạng của tổng các căn)
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
c)(x2+x)2-2(x2+x)-15
đặt x2+x=a ta có
a2-2a-15
=a2+3a-5a-15
=(a2+3a)-(5a+15)
=a(a+3)-5(a+3)
=(a+3)(a-5)
thay a=x2+x
(x2+x+3)(x2+x-5)