K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

1 tháng 12 2018

Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).

Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.

Chọn C. 

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha

6 tháng 12 2023

S A B C D O M N P H K

a/

Xét tg SAD có

SM=DM; SN=AN => MN là đường trung bình của tg SAD

=> MN//AD

Mà AD//BC (cạnh đối hbh)

=> MN//BC mà \(BC\in\left(SBC\right)\) => MN//(SBC)

C/m tương tự ta cũng có NP//(SCD)

b/

Ta có

NP//(SCD) (cmt) (1)

Xét tg SBD có

SP=BP (gt)

OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> PO là đường trung bình của tg SBD

=> PO//SD mà \(SD\in\left(SCD\right)\) => PO//(SCD) (2)

Từ (1) và (2) => (ONP)//(SCD)

C/m tương tự ta cũng có (OMN)//(SBC)

c/

Trong (ABCD) , qua O dựng đường thẳng // AD cắt AB và CD lần lượt tại H và K Ta có

MN//AD (cmt)

=> KH//MN

\(O\in\left(OMN\right);O\in KH\)

\(\Rightarrow KH\in\left(OMN\right)\) mà \(H\in AB;K\in CD\)

=>K; H là giao của (OMN) với CD và AB

d/

Ta có

KH//AD

AB//CD => AH//DK

=> AHKD là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AD=HK

Ta có

MN là đường trung bình của tg SAD (cmt)

\(\Rightarrow MN=\dfrac{AD}{2}\) mà AD=HK (cmt)

\(\Rightarrow MN=\dfrac{HK}{2}\Rightarrow\dfrac{MN}{HK}=\dfrac{1}{2}\)

 

 

 

 

 

22 tháng 12 2020

Đề bài sai òi :v Vẽ hình ra đi bạn.

Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)

10 tháng 12 2020

a/ Một kinh nghiệm khi đề bài cho dữ kiện về trọng tâm thì vẽ hết 3 đường trung tuyến ra, sẽ rất dễ nhìn

Ta có SG là đường trung tuyến của tam giác SCD, kéo dài SG cắt CD ở K=> \(MG\subset\left(SAK\right)\)

\(\left\{{}\begin{matrix}A\in SA\subset\left(SAK\right)\\A\in AB\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow A=\left(SAK\right)\cap\left(ABCD\right)\)

\(\left\{{}\begin{matrix}K\in SK\subset\left(SAK\right)\\K\in CD\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow K=\left(SAK\right)\cap\left(ABCD\right)\)

\(\Rightarrow\left(SAK\right)\cap\left(ABCD\right)=AK\)

\(AK\cap MG=\left\{I\right\}\Rightarrow MG\cap\left(ABCD\right)=\left\{I\right\}\)

b/ \(BN\subset\left(SBD\right)\)

\(\left(SAG\right)\equiv\left(SAK\right)\)

\(AK\cap BD=\left\{H\right\}\Rightarrow H=\left(SBD\right)\cap\left(SAK\right)\)

\(\Rightarrow\left(SAG\right)\cap\left(SAK\right)=SH\)

\(SH\cap BN=\left\{O\right\}\Rightarrow BN\cap\left(SAG\right)=\left\{O\right\}\)

 

10 tháng 12 2020

a/ Một kinh nghiệm khi đề bài cho dữ kiện về trọng tâm thì vẽ hết 3 đường trung tuyến ra, sẽ rất dễ nhìn

Ta có SG là đường trung tuyến của tam giác SCD, kéo dài SG cắt CD ở K=> \(MG\subset\left(SAK\right)\)

\(\left\{{}\begin{matrix}A\in SA\subset\left(SAK\right)\\A\in AB\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow A=\left(SAK\right)\cap\left(ABCD\right)\)

\(\left\{{}\begin{matrix}K\in SK\subset\left(SAK\right)\\K\in CD\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow K=\left(SAK\right)\cap\left(ABCD\right)\)

\(\Rightarrow\left(SAK\right)\cap\left(ABCD\right)=AK\)

\(AK\cap MG=\left\{I\right\}\Rightarrow MG\cap\left(ABCD\right)=\left\{I\right\}\)

b/ \(BN\subset\left(SBD\right)\)

\(\left(SAG\right)\equiv\left(SAK\right)\)

\(AK\cap BD=\left\{H\right\}\Rightarrow H=\left(SBD\right)\cap\left(SAK\right)\)

\(\Rightarrow\left(SAG\right)\cap\left(SAK\right)=SH\)

\(SH\cap BN=\left\{O\right\}\Rightarrow BN\cap\left(SAG\right)=\left\{O\right\}\)

 

16 tháng 1 2019