\(I=BN\cap\left(SA...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2019

a/ Gọi O là giao điểm AC và BD

Trong mặt phẳng (SBD), nối SO cắt BN tại I \(\Rightarrow I=BN\cap\left(SAC\right)\)

b/ Nối MD cắt AC tại P

Trong mặt phẳng (SMD), nối MN cắt SP tại J

\(\Rightarrow J=MN\cap\left(SAC\right)\)

c/ Ba mặt phẳng (SAC); (BCN), (SDM) cắt nhau theo 3 giao tuyến phân biệt CI, MN, SP.

Mà SP cắt MN tại J \(\Rightarrow\) CI đi qua J hay C;I;J thẳng hàng

25 tháng 5 2017

a) S, I, J, G là điểm chunng của (SAE) và (SBD)

b) S, K, L là điểm chung của (SAB) và (SDE)

29 tháng 8 2021

Điểm M và N lần lượt  thuộc các cạnh BC ,SD

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

\(\left\{{}\begin{matrix}BD\perp SA\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

\(\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

1 tháng 4 2017

a) () // (ABCD) => {A_{1}{B_{1}}^{}}^{} // AB => {B_{1}}^{} là trung điểm của SB. Chứng minh tương tự với các điểm còn lại

b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).

c) Có hai hình chóp cụt: ABCD.{A_{1}{B_{1}{C_{1}{D_{1}; ABCD.{A_{2}{B_{2}{C_{2}{D_{2}}^{}}^{}}^{}}^{}}^{}}^{}}^{}}^{}