Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BD cắt AC tại E
b: Xét ΔSAC có SM/SA=SN/SC
nên MN//AC
c: Trong mp(SAC), ta có: SE không song song với MN
=>SE cắt MN tại K
d: \(C\in SN\)
\(C\in\left(ABCD\right)\)
Do đó: \(SN\cap\left(ABCD\right)=C\)
a: \(E\in AC\subset\left(SAC\right)\)
\(E\in BD\subset\left(SBD\right)\)
Do đó: \(E\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)
b: Gọi K là giao của AD với BC
\(K\in AD\subset\left(SAD\right)\)
\(K\in BC\subset\left(SBC\right)\)
Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(SK=\left(SAD\right)\cap\left(SBC\right)\)
c: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\), xy đi qua S và xy//AB//CD
a: \(E\in AC\subset\left(SAC\right);E\in BD\subset\left(SBD\right)\)
=>\(E\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)
b: Gọi K là giao của AD và BC
\(K\in AD\subset\left(SAD\right);K\in BC\subset\left(SBC\right)\)
=>\(K\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SK\)
c: Xét (SAB) và (SCD) có
AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy; xy đi qua S và xy//AB//CD
a: Xét ΔSBD có
H,K lần lượt là trung điểm của SB,SD
=>HK là đường trung bình của ΔSBD
=>HK//BD
mà \(BD\subset\left(ABCD\right)\);HK không thuộc (ABCD)
nên HK//(ABCD)
b: Chọn mp(SBD) có chứa BK
\(O\in BD\subset\left(SBD\right);O\in AC\subset\left(SAC\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
Gọi E là giao điểm của SO với BK
=>E là giao điểm của BK với mp(SAC)
=>BK cắt (SAC) tại E
c: \(O\in BD\subset\left(SBD\right);S\in\left(SBD\right)\)
Do đó: \(SO\subset\left(SBD\right)\)
Áp dụng định lý Talet trong tam giác KAD:
\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)
\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK
Mà E, F là trung điểm SA, SD
\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK
\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)
\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)
Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)
\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)
a) Gọi N là giao điểm của EM và CD
Vì M là trung điểm của AB nên N là trung điểm của CD (do ABCD là hình thang)
⇒ EN đi qua G
⇒ S, E, M, G ∈ (α) = (SEM)
Gọi O là giao điểm của AC và BD
Ta có (α) ∩ (SAC) = SO
và (α) ∩ (SBD) = SO = d
b) Ta có: (SAD) ∩ (SBC) = SE
c) Gọi O' = AC' ∩ BD'
Ta có AC' ⊂ (SAC), BD' ⊂ (SBD)
⇒ O' ∈ SO = d = (SAC) ∩ (SBD)
- Ta có: S là điểm chung của hai mặt phẳng (SAD) và (SBC)
Từ S kẻ Sx sao cho Sx // AD // BC. Vậy Sx là giao tuyến của hai mặt phẳng (SAD) và (SBC).
- Ta có: M, P là trung điểm của SA, SD. Suy ra MP // AD // BC
Có: N là điểm chung của hai mặt phẳng (MNP) và (ABCD)
Từ N kẻ NQ sao cho NQ // AD.
Vậy NQ là giao tuyến của hai mặt phẳng (MNP) và (ABCD).
a: Ta có: CD//AB
AB\(\subset\)(SAB)
CD không nằm trong mp(SAB)
Do đó: CD//(SAB)
b: Xét ΔSBD có
M,N lần lượt là trung điểm của SB,SD
=>MN là đường trung bình của ΔSBD
=>MN//BD
Xét (CMN) và (ABCD) có
\(C\in\left(CMN\right)\cap\left(ABCD\right)\)
MN//BD
Do đó: (CMN) giao (ABCD)=xy, xy đi qua C và xy//MN//BD
M,N lần lượt là trung điểm của SB và SB là sai đề rồi bạn. Bạn coi lại đề nha
a: Xét ΔSAC có M,N lần lượt là trung điểm của SA,SC
=>MN là đường trung bình của ΔSAC
=>MN//AC
mà MN không thuộc mp(ABCD) và \(AC\subset\left(ABCD\right)\)
nên MN//(ABCD)
b: \(A\in AN;A\in\left(ABD\right)\)
=>\(A\in AN\cap\left(ABD\right)\)
mà \(N\in SC\) không thuộc mp(ABD)
nên \(A=AN\cap\left(ABD\right)\)
c: \(S\in\left(SAC\right);E\in AC\subset\left(SAC\right)\)
Do đó: \(SE\subset\left(SAC\right)\)