K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 giờ trước (21:44)

a có \(\angle \left(\right. S C , \left(\right. A B C D \left.\right) \left.\right) = 45^{\circ}\).

Nghĩa là hình chiếu của \(S\) xuống đáy nằm trên đường chéo \(B D\).

Xét tam giác cân \(S A B\), do tính đối xứng ⇒ khoảng cách từ \(A\) đến \(\left(\right. S C D \left.\right)\) chính bằng nửa cạnh hình vuông:

\(d\left(\right.A,\left(\right.SCD\left.\right)\left.\right)=\frac{a}{2}\)

Với \(M\) là trung điểm \(S A\), khoảng cách giảm đi một nửa:

\(d\left(\right.M,\left(\right.SCD\left.\right)\left.\right)=\frac{a}{4}\)


Đáp số

\(d \left(\right. A , \left(\right. S C D \left.\right) \left.\right) = \frac{a}{2}\)

\(d \left(\right. M , \left(\right. S C D \left.\right) \left.\right) = \frac{a}{4}\)

23 tháng 5 2016

a. Ta có : \(\begin{cases}AB\perp BC\left(ABCDvuong\right)\\SA\perp BC\left(SA\perp\left(ABCD\right)\right)\end{cases}\)  \(\Rightarrow BC\perp\left(SAB\right)\) mà \(SB\subset\left(SAB\right)\) nên \(BC\perp SB\) Vậy \(\Delta SBC\left(\perp B\right)\)

tương tự ta có : \(\begin{cases}SA\perp DC\\AD\perp DC\end{cases}\) \(\Rightarrow DC\perp\left(SAD\right)\) mà \(SD\subset\left(SAD\right)\) nên \(SD\perp DC\) Vậy \(\Delta SDC\left(\perp D\right)\)

ta có \(SA\perp AD\) nên \(\Delta SAD\left(\perp A\right)\) 

Có \(SA\perp AB\) nên \(\Delta SAB\left(\perp A\right)\)

23 tháng 5 2016

b. Ta có : \(\begin{cases}AC\perp BD\\SA\perp BD\end{cases}\) \(\Rightarrow BD\perp\left(SAC\right)\) mà \(BD\subset\left(SBD\right)\) nên \(\left(SAC\right)\perp\left(SBD\right)\)

 

26 tháng 1 2018

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)

\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)

23 tháng 1 2018

Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?

28 tháng 4 2016

s A B C D a

1.SA \(\perp\)AB , SA\(\perp\)AD =>SAB vuông tại A, SAD vuông tại A

\(\begin{cases}AB\perp BC\left(hvABCD\right)\\SA\perp BC\left(SA\perp mpABCD\right)\end{cases}\) =>(SAB)\(\perp\)BC  =>SB\(\perp\)BC =>SBC vuông tại B

\(\begin{cases}AD\perp CD\\SA\perp CD\end{cases}\) =>(SAD)\(\perp\)CD =>SD\(\perp\)CD =>SCD vuông tại D

21 tháng 4 2017

bạn Như cho mình xin đáp án mấy câu còn lại nhé ạ

a: BC vuông góc SA

BC vuông góc AB

=>BC vuông góc (SAB)

=>(SAB) vuông góc (SBC)

b: BA vuông AD

BA vuông góc SA

=>BA vuông góc (SAD)

=>BA vuông góc SD

Lấy H là trung điểm của SD

=>HM//DC

=>HM vuông góc BC

ΔSAD vuông tại A nên AH vuông góc SD

=>SD vuông góc (BAH)

=>SD vuông góc (ABM)

=>(SCD) vuông góc (ABM)

11 tháng 5 2022

a. Ta có : \(BC\perp SA;BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)

b.Dễ dàng c/m : \(AB\perp\left(SAD\right)\) \(\Rightarrow AB\perp SD\)

Lấy H là TĐ SD \(\Rightarrow MH\) // DC // AB 

\(\Delta SAD\) vuông cân tại A ; H là TĐ SD \(\Rightarrow AH\perp SD\)

Suy ra : \(SD\perp\left(ABH\right)\Rightarrow SD\perp\left(ABM\right)\Rightarrow\left(SCD\right)\perp\left(ABM\right)\left(đpcm\right)\)

24 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30 o .

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

S E   =   C E . tan 60 o   =   a 3   ⇒   S A   =   S E 2 -   A E 2   =   3 a 2   -   a 2   =   a 2 .

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).