K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

Một đường thẳng muốn vuông góc với một mặt phẳng thì phải vuông góc với 2 đường thẳng chéo nhau chứ bạn? ở ba câu trên bạn mới chứng minh nó vuông với 1 đường mà

 

2 tháng 4 2016

S B H C I A D

Gọi I là trung điểm của AD.

Ta có : \(IA=ID=IC=a\Rightarrow CD\perp AC\)

Mặt khác, \(CD\perp SA\) suy ra CD vuông góc với SC nên tam giác SCD là tam giác vuông tại C

Trong tam giác vuông SAB ta có :

\(\frac{SH}{SB}=\frac{SA^2}{SB^2}=\frac{SA^2}{SA^2+AB^2}=\frac{2a^2}{2a^2+a^2}=\frac{2}{3}\)

Gọi \(d_{1,};d_2\) lần lượt là khoảng cách từ B và H đến mặt phẳng (SCD) thì

\(\frac{d_2}{d_1}=\frac{SH}{SB}=\frac{2}{3}\Rightarrow d_2=\frac{2}{3}d_1\)

\(d_1=\frac{3V_{B.SCD}}{S_{SCD}}=\frac{SA.S_{BCD}}{S_{SCD}}\)

\(S_{NCD}=\frac{1}{2}AB.BC=\frac{1}{2}a^2\)

\(S_{SCD}=\frac{1}{2}SC.CD=\frac{1}{2}\sqrt{SA^2+AB^2+BC^2}.\sqrt{IC^2+ID^2}=a^2\sqrt{2}\)

Suy ra \(d_1=\frac{a}{2}\)

Vậy khoảng cách từ H đến mặt phẳng (SCD) là \(d_2=\frac{2}{3}d_1=\frac{a}{3}\)

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

5 tháng 4 2016

S M H G N A O D C

Ta có \(\begin{cases}BC\perp SA\\BC\perp AB\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\)\(\Rightarrow BC\perp AM\) (vì \(AM\subset\left(SAB\right)\left(1\right)\)

Mặt khác \(SC\perp\alpha\Rightarrow SA\perp AM\) (vì \(AM\subset\alpha\)) (2)

Từ (1) và (2) suy ra \(AM\perp\left(SBC\right)\Rightarrow AM\perp MG\) (vì \(MG\subset\left(SBC\right)\))

\(\Rightarrow\Delta AMG\) vuông tại M, tương tự ta cũng có tam giác ANG vuông tại N \(\Rightarrow\) tâm H đường tròn đáy của (H) là trung điểm AG, có bán kính \(R=\frac{AG}{2}\)

Xét tam giác vuông SAC tại A có \(AG=\frac{SA.AC}{SC}=\frac{\sqrt{6}}{3}a\Rightarrow R=\frac{\sqrt{6}}{6}a\)

Vì OH là đường cao (H)\(\Rightarrow OH\perp\alpha\Rightarrow OH\)//\(SC\Rightarrow O\) là giao điểm hai đường chéo AC, BD

\(\Rightarrow OH=\frac{1}{2}CG\).

Xét tam giác vuoongSAC có AG là đường cao, nên \(CG=\frac{AC^2}{SC}=\frac{2}{\sqrt{3}}a\Rightarrow OH=\frac{\sqrt{3}}{3}a\)

Vậy thể tích hình nón là \(V_{\left(H\right)}=\frac{1}{3}\pi.R^2.OH=\frac{\sqrt{3}}{54}\pi a^3\)

31 tháng 3 2016

S A B C D M N H K

Thế tích của khối chóp S.CDNM :

\(S_{CDNM}=S_{ABCD}-S_{AMN}-SBC\)

             \(=AB^2-\frac{1}{2}AM.AN-\frac{1}{2}BC.BM\)

             \(=a^2-\frac{a^2}{8}-\frac{a^2}{4}=\frac{5a^2}{8}\)

Vậy \(V_{SCDNM}=\frac{1}{3}S_{CDNM.SH}=\frac{5\sqrt{3}a^2}{24}\)

Khoảng cách giữa 2 đường thẳng DM và SC

\(\Delta ADM=\Delta DCN\Rightarrow\widehat{ADM}=\widehat{DCN}\Rightarrow DM\perp CN\) 

Kết hợp với điều kiện :

\(DM\perp SH\Rightarrow DM\perp\left(SHC\right)\)

Hạ \(HK\perp SC\left(K\in SC\right)\Rightarrow HK\)là đoạn vuông góc chung của DM và SC

Do đó :

\(d\left(DM,SC\right)=HK\)

Ta có :

\(\begin{cases}HC=\frac{CD^2}{CN}=\frac{2a}{\sqrt{5}}\\HK=\frac{SH.HC}{\sqrt{SH^2+HC^2}}=\frac{2\sqrt{3}a}{\sqrt{19}}\end{cases}\)

\(\Rightarrow d\left(DM,SC\right)=\frac{2\sqrt{3}a}{\sqrt{19}}\)

19 tháng 4 2016

cậu ơi, hướng dẫn giúp tớ bài tương tự này với: cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, góc giữa SD và mặt phẳng ABCD là 45 độ, SA vuông góc (ABCD). M là trung điểm BC. Tính khoảng cách DM và SC

cảm ơn c nhiều nhiều.

7 tháng 4 2016

Ta có \(\left(SHC\right)\cap\left(SHD\right)=SH\)

Từ giả thiết \(\left(SHC\right)\perp\left(ABCD\right);\left(SHD\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

                \(\Leftrightarrow V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}AB.AD.SH=\frac{1}{3}a^2\sqrt{3}.SH\left(1\right)\)

Ta có \(SH\perp\left(ABCD\right)\Rightarrow HD\) là hình chiếu của SD trên (ABCD), suy ra góc giữa SD và (ABCD) là \(\widehat{SDH}=60^0\Rightarrow SH=HD\tan\widehat{SDHH}=\frac{a\sqrt{39}}{2}\)

Khi đó \(V_{S.ABCD}=\frac{1}{2}a^3\sqrt{13}\)

Dựng hình bình hành ACBE. Khi đó AC//BE suy ra AC//(SBE)

\(\Rightarrow d\left(AC,SB\right)=d\left(AC,\left(SBE\right)\right)=d\left(A,\left(SBE\right)\right)=2d\left(H,\left(SBE\right)\right)\)

Gọi K, I lần lượt là hình chiếu của H trên BE và SK.

Khi đó \(BE\perp KH,BE\perp SH\Rightarrow BE\perp HI\left(1\right)\)

Mặt khác \(HI\perp SK\left(2\right)\)

Từ (1) và (2) suy ra \(HI\perp\left(SBE\right)\Rightarrow d\left(H,\left(SBE\right)\right)=HI\)

Tính được \(HK=\frac{a\sqrt{3}}{4};HI=\frac{a\sqrt{39}}{\sqrt{212}}\)

\(\Rightarrow d\left(AC,SB\right)=2d\left(H,\left(SBE\right)\right)=2HI=\frac{a\sqrt{39}}{\sqrt{53}}=\frac{a\sqrt{2067}}{53}\)

27 tháng 9 2017

Ý C