K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 3 2021

Gọi N là trung điểm AB \(\Rightarrow MN\perp AD\Rightarrow AD\perp\left(SMN\right)\Rightarrow AD\perp SM\)

Mặt khác: \(MN=AB=a\) ; \(SM=SN=\sqrt{SO^2+\left(\dfrac{MN}{2}\right)^2}=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow SM^2+SN^2=MN^2\Rightarrow\Delta SMN\) vuông cân tại S hay \(SM\perp SN\)

\(\Rightarrow SM\perp\left(SAD\right)\)

Trong mp (SBC), dựng hình chữ nhật SMCP \(\Rightarrow CP||SM\Rightarrow CP\perp\left(SAD\right)\)

\(\Rightarrow\) SP là hình chiếu vuông góc của SC lên (SAD) hay \(\widehat{CSP}=\phi\) 

\(AC=a\sqrt{5}\Rightarrow SC=\sqrt{SO^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{a\sqrt{6}}{2}\)\(SP=MC=\dfrac{BC}{2}=a\)

\(\Rightarrow CP=\sqrt{SC^2-SP^2}=\dfrac{a\sqrt{2}}{2}\)

\(sin\phi=\dfrac{CP}{SC}=\dfrac{\sqrt{3}}{3}\)

NV
11 tháng 3 2022

\(AC=\sqrt{AB^2+BC^2}=2a\) \(\Rightarrow AO=\dfrac{1}{2}AC=a\) ; \(AM=\dfrac{1}{2}AO=\dfrac{a}{2}\)

\(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCA}=45^0\)

\(\Rightarrow SA=AC.tan45^0=2a\)

\(AB^2=a^2\) ; \(AM.AC=\dfrac{a}{2}.2a=a^2\Rightarrow AB^2=AM.AC\)

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AC}{AB}\Rightarrow\Delta ABM\sim\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{ABC}=90^0\Rightarrow BM\perp AC\)

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BM\)

\(\Rightarrow BM\perp\left(SAC\right)\Rightarrow\left(SBM\right)\perp\left(SAC\right)\)

NV
11 tháng 3 2022

undefined

a: AC vuông góc BD

AC vuông góc SO

=>AC vuông góc (SBD)

=>SB vuông góc AC

mà AC vuông góc BD

nên AC vuông góc (SBD)

BD vuông góc AC

BD vuông góc SO

=>BD vuông góc (SAC)

=>BD vuông góc SA
b: Xét ΔACB có CO/CA=CI/CB

nên OI//AB

=>OI vuông góc BC

BC vuông góc OI

BC vuông góc SO

=>BC vuông góc (SOI)

=>(SBC) vuông góc (SOI)

NV
16 tháng 4 2021

Ta có: \(AC=\sqrt{AB^2+BC^2}=a\sqrt{3}\) ; 

\(AM=\dfrac{AD}{2}=\dfrac{a\sqrt{2}}{2}\Rightarrow BM=\sqrt{AB^2+AM^2}=\dfrac{a\sqrt{6}}{2}\)

Áp dụng định lý talet:

\(\dfrac{AI}{IC}=\dfrac{MI}{BI}=\dfrac{AM}{BC}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}IC=\dfrac{2}{3}AC=\dfrac{2a\sqrt{3}}{3}\\IB=\dfrac{2}{3}BM=\dfrac{a\sqrt{6}}{3}\end{matrix}\right.\)

\(\Rightarrow IB^2+IC^2=2a^2=BC^2\)

\(\Rightarrow\Delta IBC\) vuông tại I \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(SAC\right)\)

Mà \(BM\in\left(SMB\right)\Rightarrow\left(SAC\right)\perp\left(SMB\right)\)

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3: BC vuông góc SAB

=>AE vuông góc BC

mà AE vuông góc SB

nên AE vuông góc (SBC)

=>AE vuông góc SC

4: (SB;(SAC))=(SB;SD)=góc DSB

\(SD=\sqrt{SA^2+AD^2}=2a;SB=2a;DB=a\sqrt{2}\)

\(cosDSB=\dfrac{4a^2+4a^2-2a^2}{2\cdot2a\cdot2a}=\dfrac{3}{4}\)

=>góc DSB=41 độ

31 tháng 3 2017

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 104 sgk Hình học 11 | Để học tốt Toán 11

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

b: Tham khảo:

loading...

loading...

loading...