K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

Chọn A.

18 tháng 3 2019

Đáp án B

Ta có: B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ M A  

Mặt khác A M ⊥ S B ⇒ A M ⊥ S B C ⇒ A N ⊥ S C , tương tự A N ⊥ S C  

Do đó S C ⊥ A M N , mặt khác ∆ S B C  vuông tại B suy ra  tan B S C ^ = B C S B = a S A 2 + A B 2 = 1 3

⇒ S B ; S C ^ = B S C ^ = 30 ° ⇒ S B ; A M N ^ = 60 ° .

23 tháng 10 2021

sao suy ra được góc giữa SB; AMN = 60 ạ?

 

5 tháng 10 2018

Chọn đáp án B

8 tháng 2 2018

Đáp án B

5 tháng 8 2018

Đáp án B

Tọa độ hóa và chuẩn hóa với

28 tháng 7 2018

Chọn đáp án B.

14 tháng 7 2018
24 tháng 8 2017

Đáp án A

Gọi I là giao điểm của ACBD.

Ta có S A ⊥ A B C D ⇒ S A ⊥ B D . Lại có A C ⊥ B D  (tính chất hình vuông).

Suy ra B D ⊥ S A C . Do đó hình chiếu của SB trên (SAC) SI. Suy ra góc giữa đường thẳng SB và mặt phẳng (SAC) là góc giữa SBSI, tức là góc ISB (do tam giác ISB vuông tại I nên I S B ^  là góc nhọn). Ta có:

S B = S A 2 + A B 2 = a 2 + a 2 = a 2 , I B = B D 2 = A 2 2

D o   đ ó   sin I S B = I B S B = 1 2 ⇒ I S B = 30 °

31 tháng 12 2019

Đáp án A.

Cách 1: Gọi I là giao điểm của AC và BD.

Ta có S A ⊥ A B C D ⇒ S A ⊥ B D . Lại có A C ⊥ B D  (tính chất hình vuông).

Suy ra  B D ⊥ S A C   . Do đó hình chiếu của SB trên   S A C là SI. Suy ra góc giữa đường thẳng SB và mặt phẳng S A C  là góc giữa SB và SI, tức là góc  I S B ^    (do tam giác ISB vuông tại I nên  I S B ^    là góc nhọn). Ta có:

S B = S A 2 + A B 2 = a 2 + a 2 = a 2 , I B = B D 2 = a 2 2

Do đó

 

sin I S B ^ = I B S B = 1 2 ⇒ I S B ^ = 30 °


Cách 2: (Phương pháp tọa độ hóa) Không mất tổng quát, gán tọa độ như sau:

A 0 ; 0 ; 0 , B 1 ; 0 ; 0 , D 0 ; 1 ; 0 , S 0 ; 0 ; 1 Khi đó C 1 ; 1 ; 0 .

Ta có S A → = 0 ; 0 ; − 1 , S C → = 1 ; 1 ; − 1 , S B → = 1 ; 0 ; − 1  

Đặt  n → = S A → , S C → = 1 ; − 1 ; 0 . Khi đó n →  là một VTPT của S A C .

 

Gọi   α là góc giữa đường thẳng SB và mặt phẳng S A C , β  là góc giữa vecto n →  và vecto S B → . Ta có

sin α = cos β = n → . S B → n → . S B → = 1 2 . 2 = 1 2 ⇒ α = 30 °