K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

10 tháng 12 2021

a: Trong mp(ABCD), Gọi giao của AC và BD là O

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà S thuộc (SAC) giao (SBD)

nên (SAC) giao (SBD)=SO

b:Trong mp(ABCD), Gọi giao của AB và CD là M

\(M\in AB\subset\left(SAB\right)\)

\(M\in CD\subset\left(SCD\right)\)

=>M thuộc (SAB) giao (SCD)

mà S thuộc (SAB) giao (SCD)

nên (SAB) giao (SCD)=SM

c: Trong mp(ABCD), gọi N là giao của AD với BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

26 tháng 10 2023

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

b: Xét (SAD) và (SBC) có

AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

d: Trong mp(SAB), gọi I là giao điểm của AB với SM

\(I\in SM;I\in AB\subset\left(ABCD\right)\)

Do đó: I là giao điểm của SM với mp(ABCD)

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

 

29 tháng 8 2023

S A B C D M H K N O

a/

Ta có

\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)

b/

Xét tg SAD có

MA=MD; HA=HS => MH là đường trung bình của tg SAD

=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)

Xét tg SAB có

HA=HS; KS=KB => MH là đường trung bình của tg SAB

=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)

Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến

c/

Gọi O là trung điểm BD, Nối MO cắt BC tại N

Xét tg ABD có

MA=MD; OB=OD => MO là đường trung bình của tg ABD

=> MO//AB; mà HK//AB (cmt) => MO//HK

=> M; O; H; K cùng thuộc mặt phẳng MKH 

\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)

Mà \(N\in BC\)

=> N là giao của BC với (MKH)

Ta có MO//HK => MN//HK => MHNK là hình thang

 

 

 

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

c; AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

=>\(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: \(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

=>(SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: \(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: (HKCD) giao (ABCD)=CD

9 giờ trước (16:55)

Mình sẽ tóm tắt và giải từng ý nhé.

Đề cho: Hình chóp S.ABCD, đáy ABCD là tứ giác.
M nằm trong tam giác SBC, N nằm trong tam giác SCD.

a) Giao tuyến của (AMN) và (ABCD)

  • A thuộc (AMN) và A cũng thuộc đáy (ABCD).
  • M thuộc (AMN) nhưng M thuộc cạnh SB nên không nằm trên đáy.
  • N thuộc (AMN) nhưng N thuộc cạnh SD cũng không nằm trên đáy.
    → Để tìm giao tuyến, ta cần 2 điểm chung. Điểm A có rồi, điểm thứ hai là giao điểm của MN với đáy (ABCD) nếu có.
    Nhưng MN nối M (SB) và N (SD), cả hai không thuộc đáy, nên để tìm điểm đó ta phải xét: SB và SD giao đáy tại B và D, nối BD cắt MN tại một điểm I. I thuộc đáy, I thuộc MN, nên I ∈ (AMN) ∩ (ABCD).
    → Giao tuyến chính là AI.

b) Giao điểm của MN với (SAC)

  • M thuộc SB, N thuộc SD, mặt phẳng (SAC) chứa S, A, C.
  • SB và SD đều nằm trong (SBD), không phải (SAC), nhưng đường MN có thể cắt (SAC) tại điểm P. Để tìm P, ta tìm giao điểm của MN với đường SC (vì SC nằm trong cả (SAC) và chứa điểm từ M→N theo hướng hợp lý).

c) Giao điểm của SC với (AMN)

  • SC nằm trong (SAC).
  • Mặt phẳng (AMN) chứa A, M, N. Để tìm giao điểm Q, ta xét SC cắt MN hoặc cắt một đường trong (AMN). Trong trường hợp này SC và MN có thể cắt nhau tại chính điểm P đã tìm ở câu b).

Tóm lại:
a) AI (I là MN ∩ BD)
b) P = MN ∩ (SAC) (thường là trên SC)
c) Cùng điểm P đó

Nếu bạn muốn mình vẽ hình minh họa để nhìn rõ hơn mình có thể làm ngay.

Cho mình xin 1 tick với ạ