K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)

29 tháng 12 2017

16 tháng 8 2018

5 tháng 10 2019

Đáp án C

14 tháng 2 2019

 

Đáp án D

Phương pháp:

Qua M dựng các đường thẳng song song với BD và SC.

Cách giải:

Trong (SAB) kéo dài MN cắt SA tại H.

 

Vậy thiết diện của chóp khi cắt bởi mặt phẳng (P) là ngũ giác EFPHN.

 

22 tháng 3 2016

gọi H, K là trung điểm AB, AC thì HK là đường tb của hình thang DMNE. HK=(DM+EN)/2

Bc=2HK

1 tháng 2 2018

30 tháng 9 2018

Đáp án D

Gọi O là tâm của hình bình hành ABCD, nối  S O ∩ A M = I .

Qua I kẻ đường thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra 

14 tháng 10 2017

Chọn đáp án D

Ta có

Khi đó 

Gọi I là trung điểm của AB.

Ta có SA=SB=AB=CA=CB=a nên tam giác SAB và tam giác ABC đều cạnh a.

Khi đó A B ⊥ S I , A B ⊥ C I  và S I = C I = a 3 a  

 

Mặt khác S I = C I = S C = a 3 2  nên ∆ S I C  đều

 

Vậy góc giữa hai mặt phẳng (MNP)  và (ABC) bằng  60 0