K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2024

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow BC\perp\left(SAB\right)\)

b. 

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\)

\(\Rightarrow BD\perp\left(SAC\right)\)

c.

Theo câu a, do \(\left\{{}\begin{matrix}BC\perp\left(SAB\right)\\AH\in\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow BC\perp AH\)

Lại có \(AH\perp SB\left(gt\right)\)

\(\Rightarrow AH\perp\left(SBC\right)\)

a: ta có: BC\(\perp\)AB(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

AB,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

b: Ta có: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

c: Ta có: BC\(\perp\)(SAB)

AH\(\subset\)(SAB)

Do đó: BC\(\perp\)AH

Ta có: AH\(\perp\)SB

AH\(\perp\)BC

SB,BC cùng thuộc mp(SBC)

Do đó: AH\(\perp\)(SBC)

d: Ta có: AH\(\perp\)(SBC)

SC\(\subset\)(SBC)

Do đó: AH\(\perp\)SC

Ta có: CD\(\perp\)SA(SA\(\perp\)(ABCD))

CD\(\perp\)AD(ABCD là hình vuông)

SA,AD cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

=>AK\(\perp\)CD

mà AK\(\perp\)SD

và CD,SD cùng thuộc mp(SCD)

nên AK\(\perp\)(SCD)

=>AK\(\perp\)SC

Ta có: SC\(\perp\)AK

SC\(\perp\)AH

AK,AH cùng thuộc mp(AKH)

Do đó: SC\(\perp\)(AKH)

5 tháng 5 2022

Tham khảo nhé!

https://hoc24.vn/cau-hoi/cho-hinh-chop-sabc-co-tam-giac-abc-vuong-tai-a-goc-abc60-sbaba-hai-mat-ben-sab-va-sbc-cung-vuong-goc-voi-mat-day-goi-hk-lan-luot-la.898787451803

NV
4 tháng 3 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\\BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\)  \(\Rightarrow BD\perp\left(SAC\right)\)

\(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) ; mà \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\)

\(\left\{{}\begin{matrix}CD\perp\left(SAD\right)\Rightarrow CD\perp AK\\AK\perp SD\end{matrix}\right.\) \(\Rightarrow AK\perp\left(SCD\right)\)

\(\left\{{}\begin{matrix}AH\perp\left(SBC\right)\Rightarrow AH\perp SC\\AK\perp\left(SCD\right)\Rightarrow AK\perp SC\end{matrix}\right.\) \(\Rightarrow SC\perp\left(AHK\right)\Rightarrow SC\perp HK\)

Mặt khác theo tính đối xứng hình vuông \(\Rightarrow HK||BD\Rightarrow HK\perp AC\Rightarrow HK\perp\left(SAC\right)\)

\(AI\in\left(SAC\right)\Rightarrow HK\perp AI\)

20 tháng 2 2021

Do (SAB) và (SAC) vuông góc với đáy (ABC)

Và (ABC) ∩ (SAC) = SA nên SA ⊥ (ABC)

BC ⊥ AH, BC ⊥ SA

⇒ BC ⊥ ((SAH)

Mà BC ⊂ (SBC) nên (SAH) ⊥ (SBC)

20 tháng 2 2021
SAB và SAC vuông góc với ABC Và (ABC ) (SAC) =SA nên SA vuông góc BC vuông góc với AH .BC vuông góc SA Mà BC (ABC)nên (SAH) vuông góc ABC BC vuông góc SAH

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3: BC vuông góc SAB

=>AE vuông góc BC

mà AE vuông góc SB

nên AE vuông góc (SBC)

=>AE vuông góc SC

4: (SB;(SAC))=(SB;SD)=góc DSB

\(SD=\sqrt{SA^2+AD^2}=2a;SB=2a;DB=a\sqrt{2}\)

\(cosDSB=\dfrac{4a^2+4a^2-2a^2}{2\cdot2a\cdot2a}=\dfrac{3}{4}\)

=>góc DSB=41 độ

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ