Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Gọi giao điểm của AC và BD là O trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên (SAC) giao (SBD)=SO
Xét ΔSDC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔSDC
=>PN//SC
PN//SC
SC\(\subset\)(SBC)
PN không nằm trong mp(SBC)
Do đó: PN//(SBC)
Chọn đáp án C
Trong mp (ABCD), gọi
Do đó ngũ giác EHFGJ là thiết diện của hình chóp cắt bởi (EFG)
\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)
\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)
Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?
Qua F kẻ đường thẳng song song AD cắt AB tại H
\(\Rightarrow\left(FGH\right)||\left(SBC\right)\Rightarrow GH||\left(SBC\right)\Rightarrow GH||BC\)
Đặt \(\widehat{BAE}=a\) ; \(\widehat{DAF}=b\) (để đỡ dài)
Ta có: \(a+b=90^0-\widehat{EAF}=45^0\)
\(\Rightarrow tan\left(a+b\right)=tan45^0\)
\(\Rightarrow\dfrac{tana+tanb}{1-tana.tanb}=1\)
\(\Rightarrow tana+tanb=1-tana.tanb\)
\(\Rightarrow tanb=\dfrac{1-tana}{1+tana}\)
Mà \(tana=tan\widehat{BAE}=\dfrac{BE}{AB}=\dfrac{1}{2}\)
\(\Rightarrow tanb=tan\widehat{DAF}=\dfrac{DF}{AD}=\dfrac{AH}{AB}=\dfrac{1-\dfrac{1}{2}}{1+\dfrac{1}{2}}=\dfrac{1}{3}\)
\(\Rightarrow3AH=AB=AH+BH\Rightarrow2AH=BH\Rightarrow\dfrac{AH}{BH}=\dfrac{1}{2}\)
Talet: \(\dfrac{GA}{GS}=\dfrac{AH}{BH}=\dfrac{1}{2}\)