K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a có \(\angle \left(\right. S C , \left(\right. A B C D \left.\right) \left.\right) = 45^{\circ}\).

Nghĩa là hình chiếu của \(S\) xuống đáy nằm trên đường chéo \(B D\).

Xét tam giác cân \(S A B\), do tính đối xứng ⇒ khoảng cách từ \(A\) đến \(\left(\right. S C D \left.\right)\) chính bằng nửa cạnh hình vuông:

\(d\left(\right.A,\left(\right.SCD\left.\right)\left.\right)=\frac{a}{2}\)

Với \(M\) là trung điểm \(S A\), khoảng cách giảm đi một nửa:

\(d\left(\right.M,\left(\right.SCD\left.\right)\left.\right)=\frac{a}{4}\)


Đáp số

\(d \left(\right. A , \left(\right. S C D \left.\right) \left.\right) = \frac{a}{2}\)

\(d \left(\right. M , \left(\right. S C D \left.\right) \left.\right) = \frac{a}{4}\)

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

24 tháng 1 2019

Chọn A.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ

12 tháng 2 2017

Đáp án B

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+) Tam giác SAC cân tại S có SO là trung tuyến

⇒ SO cũng là đường cao ⇒ SO ⊥ AC.

+) Tam giác SBD cân tại S có SO là trung tuyến

⇒ SO cũng là đường cao ⇒ SO ⊥ BD.

- Từ đó suy ra SO ⊥ (ABCD).

→ Do ABCD là hình thoi nên CD không vuông góc với BD. Do đó CD không vuông góc với (SBD).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

NV
9 tháng 5 2019

S A B C D O H

Do \(\left\{{}\begin{matrix}SA=SC\\SB=SD\end{matrix}\right.\) \(\Rightarrow\) hình chiếu vuông góc của S lên đáy trùng tâm đáy

\(\widehat{BAD}=60^0\Rightarrow\Delta BAD\) đều \(\Rightarrow BD=a\Rightarrow OB=\frac{a}{2}\)

\(\Rightarrow SO=\sqrt{SB^2-OB^2}=\frac{a\sqrt{11}}{2}\)

b/ Kẻ \(OH\perp AB\Rightarrow AB\perp\left(SOH\right)\Rightarrow\widehat{SHO}\) là góc giữa (SAB) và (ABCD)

\(OH=\frac{1}{2}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{4}\Rightarrow tan\varphi=\frac{SO}{OH}=\frac{2\sqrt{33}}{3}\)