K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

24 tháng 3 2018

Đáp án B.

Vẽ đường thẳng d qua B và song song với AC.

Gọi K, I lần lượt là hình chiếu của H trên dSB, L là hình chiếu của H trên SK.

22 tháng 2 2018

Chọn A

Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C 

=> SH  ⊥ (ABC)

Xác đinh được 

Ta có MH // SA

Gọi I là trung điểm của AB => HI ⊥ AB

và chứng minh được HK  ⊥ (SAB)

Trong tam giác vuông SHI tính được 

14 tháng 1 2019

ĐÁP ÁN: C

 

 

10 tháng 9 2017

4 tháng 1 2020

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của (SAB) và mặt phẳng đáy.

Gọi G là trọng tâm tam giác ABD và E là hình chiếu của G lên AB. Ta có:

AB ⊥ SG & AB ⊥ GE⇒ AB ⊥ (SEG) ⇒ AB ⊥ SE.

SE ⊥ AB & GE ⊥ AB⇒ ∠((SAB),(ABCD)) = ∠(SEG) = 60o.

+ Xác định khoảng cách từ B đến mặt phẳng (SAD).

Hạ GN ⊥ AD. Tương tự như trên, ta có: AD ⊥ GN & AD ⊥ SG⇒ AD ⊥ (SGN)

Hạ GH ⊥ SN, ta có GH ⊥ (SAD) suy ra khoảng cách từ G đến (SAD) là GH.

+ Tính GH.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

(do GE = GN). Thế vào (1) ta được:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có: M ∈(SAD) & MB = 3MG⇒ d(B,(SAD)) = 3d(G,(SAD)) = (a√3)/2.

2 tháng 4 2019

24 tháng 9 2019

Chọn đáp án A

+ Gọi O là tâm của hình vuông ABCD. Qua O ta dựng đường thẳng d vuông góc với mặt đáy.

+ Gọi E, K, F, H, N lần lượt là trung điểm của các đoạn thẳng SD, SC, BC, AD, EK

+ Ta có tam giác SDF là tam giác cân tại F. Vì FD = FS = a 5  (độc giả tự chứng minh)

Suy ra FE ⊥ SD

Mặt khác, ta có KE // FH (Vì cùng song song với CD). Nên 4 điểm K, E, F, H đồng phẳng

+ Trong mặt phẳng (KEFH), gọi T là giao điểm của FE và ON.

Ta có T là tâm mặt cầu ngoại tiếp hình chóp S. ABCD

+ Ta có tam giác EKO là tam giác đều cạnh a. Nên

Bán kính mặt cầu là

+ Xét tam giác vuông TOB vuông tại B, ta có

10 tháng 8 2018

Đáp án B.

Ta có AD//BC, => AD//(SBC)

=> d(AD;SC) = d(AD;(SBC)) = d(D;(SBC)).

Qua I kẻ đường thẳng song song với AD, cắt CD tại H.

Suy ra IH ⊥ CD

Từ CD ⊥ IH, CD ⊥ SI=> CD ⊥ (SIH)=> CD ⊥ SH

Suy ra 

Lại có 

Từ 

Suy ra 

Từ (1) và (2), suy ra 

Vậy