Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(V=\frac{1}{3}SA.\frac{1}{2}AB.BC=\frac{1}{6}.a.a.2a=\frac{a^3}{3}\)
2.
\(V=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}.2a\sqrt{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3}{2}\)
P/s: chóp này là chóp "có đáy là tam giác đều" chứ không phải "chóp tam giác đều"
Hai loại này khác xa nhau đấy, ko lộn xộn nhầm lẫn được đâu
3.
Câu này đề sai
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông tại A
\(\Rightarrow SC>SA\) (cạnh huyền luôn lớn hơn cạnh góc vuông)
Do đó đề cho \(SA=SC\) là vô lý
4.
\(AC=BD=\sqrt{AB^2+AD^2}=2a\)
\(\widehat{SCA}=60^0\Rightarrow SA=SC.tan60^0=2a\sqrt{3}\)
\(V=\frac{1}{3}SA.AB.AD=\frac{1}{3}.2a\sqrt{3}.a.a\sqrt{3}=2a^3\)
S A B C D M O N H 45 ❤sin45=\(\dfrac{SO}{SM}\) => SO=sin45 . SM= \(\dfrac{\sqrt{2}}{2}.\dfrac{a\sqrt{3}}{2}\) = \(\dfrac{a\sqrt{6}}{4}\)
OM= \(\sqrt{SM^2-SO^2}\) = \(\dfrac{a\sqrt{6}}{4}\)
BC = 2OM => BC=\(\dfrac{a\sqrt{6}}{2}\)
V = \(\dfrac{1}{3}.AB.BC.SO=\dfrac{1}{3}.a.\dfrac{a\sqrt{6}}{2}.\dfrac{a\sqrt{6}}{4}=\dfrac{a^3}{4}\)
❤ta có: SM⊂ (SAB) (1)
mà: \(\left\{{}\begin{matrix}NC//AB\\AB\subset\left(SAB\right)\end{matrix}\right.\) => NC// (SAB) (2)
từ (1) và (2) => SM//NC
\(d_{\left(SM,NC\right)}=d_{\left(NC,\left(SAB\right)\right)}=d_{\left(N,\left(SAB\right)\right)}=2d_{\left(O,\left(SAB\right)\right)}\)
+kẻ OH⊥SM
+ Ta có: \(\left\{{}\begin{matrix}AB\perp OM\\AB\perp SO\end{matrix}\right.\) => AB ⊥ (SOM) \(\supset OH\)
=> \(\left\{{}\begin{matrix}OH\perp AB\\OH\perp SM\end{matrix}\right.\) => OH⊥(SAB)
➜d(O,(SAB)) =OH
OH=\(\dfrac{OM.SO}{\sqrt{OM^2+SO^2}}\)\(\dfrac{a\sqrt{3}}{4}\)
➜d(N,(SAB)) =d(SM,NC)= \(\dfrac{a\sqrt{3}}{2}\)
S B C D A M N
Ta có : MN là đường trung bình của tam giác SAD
Suy ra MN song song với AD và \(MN=\frac{1}{2}AD\Rightarrow\begin{cases}MN||BC\\MN=BC\end{cases}\)\(\Rightarrow\) BCNM là hình bình hành (1)
Mặt khác
\(\begin{cases}BC\perp AB\\BC\perp SA\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp BM\left(2\right)\)
Từ (1) và (2) ra suy ra BCNM là hình chữ nhật
Ta có :
\(S_{BCNM}=2S_{\Delta BCM}\Rightarrow V_{S.BCNM}=2V_{S.BCM}\)
\(V_{S.BCM}=V_{C.SBM}=\frac{1}{3}CB.S_{\Delta SBM}=\frac{1}{6}CB.S_{\Delta SAB}=\frac{1}{6}CB.\frac{1}{2}SA.AB=\frac{a^3}{6}\)
Vậy \(V_{S.BCNM}=\frac{a^3}{3}\)
4.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow BC\perp AH\)
Mà \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)
Lại có \(AK\perp SC\)
\(\Rightarrow SC\perp\left(AKH\right)\Rightarrow SK\) là đường cao của chóp S.AHK ứng với đáy là tam giác AHK vuông tại H (do \(AH\perp\left(SBC\right)\Rightarrow AH\perp HK\))
Áp dụng hệ thức lượng:
\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AB^2}=\)
À thôi đến đây phát hiện ra đề bài sai
\(SA\perp\left(ABC\right)\Rightarrow SA\perp AB\Rightarrow\) tam giác SAB vuông tại A với SA là cạnh góc vuông, SB là cạnh huyền
\(\Rightarrow SB>SA\Rightarrow SB=SA=a\) là hoàn toàn vô lý
Đáp án D