K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=ABCD,G=ENSBGE=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14hd(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2h=a66111h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644.d(M,(NCD))=a6644. 

24 tháng 2 2022

bẹn tk thay chữ vô thoy là đc:

undefined

Gọi  là trung điểm của  . Gọi  là giao điểm của  và 
  
 nên  .
 .
 Ta kẻ  , mặt khác  .
 Ta kẻ  .   .
 Ta có   .
 Ta có  là hình chữ nhật,  .
  
 Ta có  .
   ,
    .
 Vậy  .

16 tháng 1 2019

ĐÁP ÁN: D

 

1: SA vuông góc (ABCD)

=>SA vuông góc AB

=>ΔSAB vuông tại A

SA vuông góc (ABCD)

=>SA vuông góc AD

=>ΔSAD vuông tại A

4: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

(SC;(ABCD))=(CS;CA)=góc SCA

AC=căn a^2+a^2=a*căn 2

tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ

NV
14 tháng 9 2021

Ta có:

\(\left\{{}\begin{matrix}BH\cap\left(SAC\right)=S\\BS=2HS\end{matrix}\right.\) \(\Rightarrow d\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(B;\left(SAC\right)\right)\)

Từ B kẻ \(BE\perp AC\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BE\\BE\perp AC\end{matrix}\right.\) \(\Rightarrow BE\perp\left(SAC\right)\)

\(\Rightarrow BE=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BE^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}=\dfrac{3}{2a^2}\Rightarrow BE=\dfrac{a\sqrt{6}}{3}\)

\(\Rightarrow h\left(H;\left(SAC\right)\right)=\dfrac{1}{2}BE=\dfrac{a\sqrt{6}}{6}\)

b.

Ta có: \(CD||AB\Rightarrow CD||\left(SAB\right)\)

Mà \(AH\in\left(SAB\right)\Rightarrow d\left(AH,CD\right)=d\left(CD;\left(SAB\right)\right)=d\left(D;\left(SAB\right)\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\Rightarrow AD=d\left(D;\left(SAB\right)\right)\)

\(\Rightarrow d\left(AH;CD\right)=AD=a\sqrt{2}\)

NV
14 tháng 9 2021

undefined

30 tháng 9 2019