Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Xác định được
Vì M là trung điểm SA nên
Kẻ AK ⊥ DM và chứng minh được AK ⊥ (CDM) nên
Trong tam giác vuông MAD tính được
Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)
Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)
Vậy d(A,(SCD))=AH
Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)
Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)
E=AB∩CD,G=EN∩SB⇒GE=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.
d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14hd(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h
Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a√66111h2=1AN2+1AE2+1AD2=116a2⇒h=a6611
Vậy d(M,(NCD))=a√6644.d(M,(NCD))=a6644.
bẹn tk thay chữ vô thoy là đc:
Gọi là trung điểm của . Gọi là giao điểm của và
nên .
.
Ta kẻ , mặt khác .
Ta kẻ . .
Ta có .
Ta có là hình chữ nhật, .
Ta có .
,
.
Vậy .
1: SA vuông góc (ABCD)
=>SA vuông góc AB
=>ΔSAB vuông tại A
SA vuông góc (ABCD)
=>SA vuông góc AD
=>ΔSAD vuông tại A
4: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=1/2
=>góc SDA=27 độ
(SC;(ABCD))=(CS;CA)=góc SCA
AC=căn a^2+a^2=a*căn 2
tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ
Ta có:
\(\left\{{}\begin{matrix}BH\cap\left(SAC\right)=S\\BS=2HS\end{matrix}\right.\) \(\Rightarrow d\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(B;\left(SAC\right)\right)\)
Từ B kẻ \(BE\perp AC\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BE\\BE\perp AC\end{matrix}\right.\) \(\Rightarrow BE\perp\left(SAC\right)\)
\(\Rightarrow BE=d\left(B;\left(SAC\right)\right)\)
\(\dfrac{1}{BE^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}=\dfrac{3}{2a^2}\Rightarrow BE=\dfrac{a\sqrt{6}}{3}\)
\(\Rightarrow h\left(H;\left(SAC\right)\right)=\dfrac{1}{2}BE=\dfrac{a\sqrt{6}}{6}\)
b.
Ta có: \(CD||AB\Rightarrow CD||\left(SAB\right)\)
Mà \(AH\in\left(SAB\right)\Rightarrow d\left(AH,CD\right)=d\left(CD;\left(SAB\right)\right)=d\left(D;\left(SAB\right)\right)\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\Rightarrow AD=d\left(D;\left(SAB\right)\right)\)
\(\Rightarrow d\left(AH;CD\right)=AD=a\sqrt{2}\)