Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Gọi giao điểm của AC và BD là O trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên (SAC) giao (SBD)=SO
Xét ΔSDC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔSDC
=>PN//SC
PN//SC
SC\(\subset\)(SBC)
PN không nằm trong mp(SBC)
Do đó: PN//(SBC)
Trong mp (ABCD), nối MN kéo dài lần lượt cắt AB và AD kéo dài tại E và F
Trong mp (SAB), nối PE cắt SA tại G \(\Rightarrow PG=\left(MNP\right)\cap\left(SAB\right)\)
Trong mp (SAD), nối PF cắt SD tại H \(\Rightarrow PH=\left(MNP\right)\cap\left(SAD\right)\)
\(NH=\left(MNP\right)\cap\left(SCD\right)\)
\(GM=\left(MNP\right)\cap\left(SBC\right)\)
a:
1: \(M\in SB\subset\left(SAB\right)\)
\(M\in\left(MNP\right)\)
Do đó: \(M\in\left(SAB\right)\cap\left(MNP\right)\)(1)
\(N\in AB\subset\left(SAB\right)\)
\(N\in\left(MNP\right)\)
Do đó: \(N\in\left(SAB\right)\cap\left(MNP\right)\left(2\right)\)
Từ (1),(2) suy ra \(\left(SAB\right)\cap\left(MNP\right)=MN\)
2:
\(M\in SB\subset\left(SBC\right);M\in\left(MNP\right)\)
=>\(M\in\left(SBC\right)\cap\left(MNP\right)\)(3)
\(P\in BC\subset\left(SBC\right);P\in\left(MNP\right)\)
=>\(P\in\left(SBC\right)\cap\left(MNP\right)\)(4)
Từ (3),(4) suy ra \(\left(SBC\right)\cap\left(MNP\right)=MP\)
3:
\(N\in AB\subset\left(ABC\right);N\in\left(MNP\right)\)
=>\(N\in\left(ABC\right)\cap\left(MNP\right)\)(5)
\(P\in BC\subset\left(ABC\right);P\in\left(MNP\right)\)
=>\(P\in\left(ABC\right)\cap\left(MNP\right)\left(6\right)\)
Từ (5),(6) suy ra \(\left(ABC\right)\cap\left(MNP\right)=NP\)
b: Xét ΔBAS có BN/BA=BM/BS
nên NM//AS
=>MN//(SAC)