Cho hình chóp đều S.ABCD có cạnh đáy bằng 4 cm và cạnh bên bằng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

a) Gọi O là tâm của đáy ABCD, M là giao điểm của SO và mặt phẳng (P). Ta có: OM = 2(cm).

Ta tính được O B   =   2 2 c m rồi suy ra SO = 5 (cm)

Từ đó chiều cao cần tìm là: SM = SO - OM 3 (cm)

b) Gọi I là trung điểm của BC. E, F, J lần lượt là giao điểm của SB, SC, SI với mặt phẳng (p).

17 tháng 6 2019

26 tháng 10 2018

10 tháng 7 2017

18 tháng 9 2017

Ta có: SH’ = 2 3 SH = 2 3 .6 = 4 (cm)

8 tháng 10 2018

10 tháng 2 2018

24 tháng 4 2017

a) Diện tích đáy của hình chóp đều:

S = BC 2 = 6,52 = 42,25 (m2)

Thể tích hình chóp đều:

V = \(\dfrac{1}{3}\). S.h = \(\dfrac{1}{3}\). 42,25 . 12 ≈ 169 (cm3)

b) Các mặt xung quanh là những hình thang cân đáy nhỏ 2cm, đáy lớn 4cm, chiều cao 3,5cm. Nên:

Sxq = \(4.\dfrac{\left(2+4\right).3,5}{2}=42\left(cm^2\right)\) = 42 (cm2)