K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
A B C D O H K I O' d
Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành. Từ O hạ đường cao OO' vuông góc với d tại O'.
Ta có \(\hept{\begin{cases}OA=OC\\OO'\text{//}AH\end{cases}\Rightarrow}\) OO' là đường trung bình của tam giác AHC => AH = 2OO' (1)
Xét tứ giác BDKI có : \(\hept{\begin{cases}DK\text{//}OO'\text{//}BI\\OB=OD\end{cases}\Rightarrow}\) OO' là đường trung bình của hình thang BDKI
=> DK + BI = 2OO' (2)
Từ (1) và (2) suy ra AH = BI + DK.
Bạn sửa lại đề bài cho đúng nhé!
A B C D (d) H I K E F
Gọi F là giao điểm của AH và BC. Kẽ DF vuông góc với AH
Ta có \(\widehat{AEH}=\widehat{AHC}=\widehat{DKC}=90\)
\(\Rightarrow DEHK\)là hình chữ nhật
\(\Rightarrow HE=DK\left(1\right)\)
Ta có \(\widehat{DAF}=\widehat{AFB\:}\)(AD // BC)
\(\widehat{IBF}=\widehat{AFB\:}\)(BI // AH)
\(\Rightarrow\widehat{DAF}=\widehat{IBF}\)
\(\widehat{AFD}=\widehat{BIC}=90\)
AD = BC
\(\Rightarrow\Delta BIC=\Delta AED\)
\(\Rightarrow BI=AE\left(2\right)\)
Từ (1) và (2) => AE + HE = AH = BI + DK
PS: Phải là chứng minh AH = BI + DK mới đúng nha