Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ABCD là hình bình hành có O là giao điểm hai đường chéo
⇒ OB = OD.
+ ABCD là hình bình hành ⇒ AB // CD ⇒ (Hai góc SLT).
Hai tam giác BOM và DON có:
⇒ ΔBOM = ΔDON (g.c.g)
⇒ OM = ON
⇒ O là trung điểm của MN
⇒ M đối xứng với N qua O.
Bài giải:
Hai tam giác BOM và DON có
ˆB1B1^ = ˆD1D1^ (so le trong)
BO = DO (tính chất)
ˆO1O1^ = ˆO2O2^ (đối đỉnh)
nên ∆BOM = ∆DON (g.c.g)
Suy ra OM = ON.
O là trung điểm của MN nên M đối xứng với N qua O
Xét ΔAOM và ΔCON có
\(\widehat{MAO}=\widehat{NCO}\)
OA=OC
\(\widehat{AOM}=\widehat{CON}\)
Do đó: ΔAOM=ΔCON
Suy ra:OM=ON
hay M và N đối xứng nhau qua O
Xét ΔOAC và ΔOHD có
\(\widehat{OAC}=\widehat{OHD}\)
OA=OH
\(\widehat{AOC}=\widehat{HOD}\)
Do đó: ΔOAC=ΔOHD
Suy ra: OC=OD
hay C đối xứng với D qua O
Vì \(\Delta ODE=\Delta OBF\left(g.c.g\right)\)
nên \(OE=OF\)
Do O là trung điểm của EF nên E và F đối xứng với nhau qua O
Xét ΔMAO và ΔNCO có
\(\widehat{MAO}=\widehat{NCO}\)
OA=OC
\(\widehat{MOA}=\widehat{NOC}\)
Do đó: ΔMAO=ΔNCO
Suy ra: MO=NO
hay O là trung điểm của MN
Xét ∆ OED và ∆ OFB, ta có:
∠ (EOD)= ∠ (FOB)(đối đỉnh)
OD = OB (tính chất hình bình hành)
∠ (ODE)= ∠ (OBF)(so le trong)
Do đó: ∆ OED = ∆ OFB (g.c.g)
⇒ OE = OF
Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O
A B C D E F O
Xét : \(\Delta OED\) VÀ \(\Delta OFB\) ta có :
\(\widehat{EOD}=\widehat{FOB}\) ( ĐỐI ĐỈNH )
OD = OB (tính chất hình bình hành)
\(\widehat{ODE}=\widehat{OBF}\) ( so le trong )
Do đó :
\(\Delta ODE=\Delta OFB\left(g.c.g\right)\)
\(\Rightarrow OE=OF\)
Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O
Chúc bạn học tốt !!!
A B C D O M N 1 1 2 1
+ ABCD là hình bình hành có O là giao điểm hai đường chéo
\(\Rightarrow OB=OD\)
+ ABCD là hình bình hành \(\Rightarrow AB//CD\Rightarrow\widehat{B}_1=\widehat{D}_1\) ( hai góc so le trong )
Hai tam giác BOM và DON có:
\(\widehat{B_1}=\widehat{D}_1\)
OB = OD
\(\widehat{O}_1=\widehat{O}_2\) ( hai góc đối đỉnh )
\(\Rightarrow\Delta BOM=\Delta DON\left(g.c.g\right)\)
\(\Rightarrow OM=ON\)
\(\Rightarrow\) O là trung điểm của MN
\(\Rightarrow\) M đối xứng với N qua O.
Vậy M đối xứng với N qua O
Chúc bạn học tốt !!!
A B C D M O N 1 2
+ ABCD là hình bình hành có O là giao điểm hai đường chéo
=> OB = OD.
+ ABCD là hình bình hành => AB // CD => \(\widehat{B_1}=\widehat{D_1}\)( Hai góc SLT ).
Hai tam giác : BOM và DON có :
\(\widehat{B_1}=\widehat{D_1}\)
OB = OD
\(\widehat{O_1}=\widehat{O_2}\)( 2 góc đối đỉnh )
=> ΔBOM = ΔDON (g.c.g)
=> OM = ON
=> O là trung điểm của MN
=> M đối xứng với N qua O.
Hai tam giác BOM và DON có: