Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng j: Đoạn thẳng [A, D] Đoạn thẳng k: Đoạn thẳng [C, D] Đoạn thẳng l: Đoạn thẳng [E, A] Đoạn thẳng m: Đoạn thẳng [F, C] Đoạn thẳng n: Đoạn thẳng [C, A] Đoạn thẳng p: Đoạn thẳng [B, E] Đoạn thẳng q: Đoạn thẳng [B, F] Đoạn thẳng r: Đoạn thẳng [B, D] B = (-2.33, 0.59) B = (-2.33, 0.59) B = (-2.33, 0.59) C = (3.76, 0.04) C = (3.76, 0.04) C = (3.76, 0.04) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm D: Giao điểm đường của g, i Điểm E: D đối xứng qua A Điểm E: D đối xứng qua A Điểm E: D đối xứng qua A Điểm F: D đối xứng qua C Điểm F: D đối xứng qua C Điểm F: D đối xứng qua C
a) Do E đối xứng với D qua A nên AD = AE.
Do ABCD là hình bình hành nên AD = BC; AD //BC.
Xét tứ giác AEBC có AE//BC; AE = BC nên nó là hình bình hành (dấu hiệu nhận biết)
b)
Do F đối xứng với D qua C nên DC = CF.
Do ABCD là hình bình hành nên AB = DC; AB // DC.
Xét tứ giác ABFC có AB//CF; AB = CF nên nó là hình bình hành (dấu hiệu nhận biết)
Do ABFC là hình bình hành nên AC // BF.
Do AEBC là hình bình hành nên AC // BE.
Theo tiên đề Oclit suy ra E, B, F thẳng hàng.
Do ABFC là hình bình hành nên \(\widehat{BAC}=\widehat{BFD}\) (Hai góc đối)
Hay \(\widehat{BAC}=\widehat{EFD}\)
c) Ta đã có E, B, F thẳng hàng.
Lại có EB = AC; BF = AC nên EB = BF.
Vậy E và F đối xứng nhau qua B.
d) Để E và F đối xứng nhau qua đường thẳng BD thì \(BD\perp EF\)
Lại có EF // AC nên \(BD\perp AC\)
Hình bình hành ABCD có hai đường chéo vuông góc thì nó trở thành hình thoi.
Vậy hình bình hành ABCD trở thành hình thoi thì E và F đối xứng nhau qua BD.
Bài 1 :
a. AB//CD (ABCD là hình bình hành) M thuộc AB N thuộc CD => BM // DN
Xét tứ giác AMCN có:
MB=DN (gt)
BM// DN
=> tứ giác AMCN là hình bình hành
b. Gọi giao điểm của AC và BD là O
=> O là trung điểm của AC và BD (tính chất hình bình hành)
Hình bình hành MBND có
O là trung điểm của BD
MN là đường chéo hình bình hành MBND
O là trung điểm MM
=> MN đi qua O
=> AC,BD,MN đồng quy tại một điểm
c.
Bài 2 :
a. AB = CD (ABCD là hình bình hành)
Mà AB = BE (A đối xứng E qua B)
=> CD=BE
AB // CD (ABCD là hình bình hành)
Mà E thuộc AC
=> CD//BE
Xét tứ giác DBEC:
CD=BE (CM)
CD//BE (CM)
=> DBEC là hình bình hành
b.
BẠN TỰ VẼ HÌNH NGHEN!!
a. Ta có : ABCD là hình bình hành.
=) AD//BC , AD = BC
Ta có : AD=BC (cmt)
Mà: AD=AE ( E đối xứng với D qua A)
=) AE=BC (1)
Ta có AD//BC (cmt)
Mà: A thuộc ED
=) AE//BC(2)
Từ (1) và (2) =) AEBC là hình bình hành ( tứ giác có 2 cạnh đối song song và bằng nhau)
b) Ta có : AEBC là hbh (cmt)
=)BC//EA
Mà: C là trung điểm DF
=) BC là đường trung bình tam giác FED
=) B là trung điểm EF
Xét tam giác EDF có:
+ A là trung điểm ED (E đố xứng D qua A)
+ B là trung điểm EF (cmt)
=) AB là đường trung bình tam giác EDF.
=)* AB //DF
*AB=1/2 DF (1)
Xét hình bình hành ABCF có:
+C là trung điểm DF ( F đối xứng với D qua C)
=)*CF = 1/2 DF (2)
*CF//AB ( AB//DF, C thuộc DF) (3)
Từ (1),(2) và (3) =) ABFC là hình bình hành ( tứ giác có 2 cạnh đối vừa song song vừa bằng nhau)
c) Ta có: B là trung điểm EF (cmt)
=)EB=BF
=) E và F đối xứng nhau qua B
$$$$$$ BÀI NÀY, ĐẶC BIỆT LÀ CÂU B CÒN CÓ CÁCH KHÁC NHƯNG THEO MÌNH LÀ LÀM VẬY$$$$$$$
BẠN THÔNG CẢM
Thanks bạn nhìu lắm.