Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(hình bạn tự vẽ nha)
CM:
- gọi giao điểm của hai đường chéo là O
- mà tứ giác ABCD là hình bình hành(gt)
- =>\(OA=OC=\frac{1}{2}ACvàOD=OB=\frac{1}{2}BD\)
kẻ OO' vuông góc với d
- ta có:OO',AA',BB',CC',DD' vuông góc với d nên OO',AA',BB',CC',DD' song song với nhau
cm OO' là đường trung bình của hình thang BB'D'D=>\(OO'=\frac{BB'+DD'}{2}\left(1\right)\)
- chứng minh OO' là đường trung bình của hình thang AA'C'C=>\(OO'=\frac{AA'+CC'}{2}\left(2\right)\)
- từ (1) và (2)=>\(\frac{AA'+CC'}{2}=\frac{BB'+DD'}{2}\Rightarrow AA'+CC'=BB'+D'D\)
Gọi O là giao điểm của AC và BD
⇒ OA = OC, OB = OD (tính chất hình bình hành)
Kẻ OO' ⊥ xy
AA' ⊥ xy (gt)
CC' ⊥ xy (gt)
Suy ra: AA' // OO' // CC'
Tứ giác ACC'A' là hình thang có:
OA = OC (chứng minh trên)
OO' // AA' nên OO' là đường trung bình của hình thang ACC'A'.
⇒ OO' = (AA' + CC') / 2 (t/chất đường trung bình của hình thang) (1)
BB' ⊥ xy
DD' ⊥ xy (gt)
OO' ⊥ xy (gt)
Suy ra: BB'// OO' // DD'
Tứ giác BDD'B' là hình thang có:
OB = OD (Chứng minh trên)
OO' // BB' nên OO' là đường trung bình của hình thang BDD'B'.
⇒ OO' = (BB' + DD') / 2 (tính chất đường trung bình của hình thang) (2)
Từ (1) và (2) => AA' + CC' = BB + DD'
A B C D O D' A' O' C' B'
( Bạn tự kí hiệu vào hình nhé )
Gọi O là giao điểm của AC và BD .
Kẻ \(OO'\perp xy\)
Ta co : ABCD là hình bình hành có O là giao điểm của 2 đường chéo AC và BD .
=> O là trung điểm của AC và BD
Lại có : \(DD'//AA'//OO'//CC'//BB'\)( cùng vuông góc với xy )
=> CC'AA' và DD'BB' là hình thang .
Xét hình thang CC'AA' ta có :
\(\hept{\begin{cases}OA=OA\\CC'//OO'//AA'\left(cmt\right)\end{cases}}\)( t/c hbh )
\(\Rightarrow OO'=\frac{CC'+AA'}{2}\) (1)
Xét hình thang DD'BB' ta có :
\(\hept{\begin{cases}OB=OD\\DD'//OO'//BB'\left(cmt\right)\end{cases}}\)
\(\Rightarrow OO'=\frac{BB'+DD'}{2}\) (2)
Từ (1) và (2)
=> ...
tren mang co day ban
mk đâu thấy đâu