K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

HD: \(\overrightarrow{BC}=\frac{-2}{3}\overrightarrow{AM}+\frac{4}{3}\overrightarrow{AN};\overrightarrow{CD}=\frac{-4}{3}\overrightarrow{AM}+\frac{2}{3}\overrightarrow{AN}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
a. 

$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$ (tính chất hình bình hành)

b.

$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AC}=\frac{2}{3}(\overrightarrow{AB}+\overrightarrow{AD})$

c. 

$\overrightarrow{AN}=\overrightarrow{AC}+\overrightarrow{CN}=\overrightarrow{AC}+\frac{1}{2}\overrightarrow{BA}$

$=\overrightarrow{AB}+\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$

$=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Từ M kẻ đường thẳng song song với AB, cắt AD tại E.

Khi đó tứ giác ABME là hình bình hành.

Do đó: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AE} \).

Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)

\( \Rightarrow \overrightarrow {AE}  = \frac{1}{2}\overrightarrow {AD} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Vậy \(\overrightarrow {AM}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \)

Chú ý khi giải

+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.

24 tháng 5 2019

*Xét  tam giác ABC có M; N  là trung điểm của AB, BC nên MN là đường trung bình của tam giác.

⇒ M N / / A C ;     M N = 1 2 A C   ( 1 )

* Xét  tam giác ADC có P; Q  là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.

⇒ P Q / / A C ;     P Q = 1 2 A C   ( 2 )

* Từ (1) (2)  suy  ra  PQ// MN;  PQ = MN.

Suy ra, vecto  M N → không cùng phương với vecto  A P →

Đáp án B

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có:

\(\overrightarrow {DM}  = \overrightarrow {DA}  + \overrightarrow {AM}  =  - \overrightarrow {AD}  + \frac{1}{2}\overrightarrow {AB} \) (do M là trung điểm của AB)

\(\overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {BN}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \) (do N là trung điểm của BC)

b)

\(\begin{array}{l}\overrightarrow {DM} .\overrightarrow {AN}  = \left( { - \overrightarrow {AD}  + \frac{1}{2}\overrightarrow {AB} } \right).\left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right)\\ =  - \overrightarrow {AD} .\overrightarrow {AB}  - \frac{1}{2}{\overrightarrow {AD} ^2} + \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{1}{4}\overrightarrow {AB} .\overrightarrow {AD} \end{array}\)

Mà \(\overrightarrow {AB} .\overrightarrow {AD}  = \overrightarrow {AD} .\overrightarrow {AB}  = 0\) (do \(AB \bot AD\)), \({\overrightarrow {AB} ^2} = A{B^2} = {a^2};{\overrightarrow {AD} ^2} = A{D^2} = {a^2}\)

\( \Rightarrow \overrightarrow {DM} .\overrightarrow {AN}  =  - 0 - \frac{1}{2}{a^2} + \frac{1}{2}{a^2} + \frac{1}{4}.0 = 0\)

Vậy \(DM \bot AN\) hay góc giữa hai đường thẳng DM và AN bằng \({90^ \circ }\).

NV
20 tháng 9 2021

\(\overrightarrow{NC}=2\overrightarrow{ND}=2\overrightarrow{NC}+2\overrightarrow{CD}\Rightarrow\overrightarrow{NC}=2\overrightarrow{DC}\Rightarrow\overrightarrow{CN}=2\overrightarrow{CD}\)

a.

\(\overrightarrow{DM}=\overrightarrow{DC}+\overrightarrow{CM}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{CB}=\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}+2\overrightarrow{CD}=-2\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\)

b.

\(\left\{{}\begin{matrix}\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\\\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{AD}=-\overrightarrow{AB}+\overrightarrow{AD}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{BD}\\\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BD}\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MN}=-2\left(\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{BD}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BD}\right)=-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{5}{4}\overrightarrow{BD}\)

NV
20 tháng 9 2021

undefined

NV
4 tháng 1 2024

\(\overrightarrow{AM}=\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{AB}=-\overrightarrow{AM}+\overrightarrow{AB}\Rightarrow2\overrightarrow{AM}=\overrightarrow{AB}\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}\)

\(\overrightarrow{AN}=2\overrightarrow{ND}=2\left(\overrightarrow{NA}+\overrightarrow{AD}\right)=-2\overrightarrow{AN}+2\overrightarrow{AD}\Rightarrow3\overrightarrow{AN}=2\overrightarrow{AD}\Rightarrow\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AD}\)

Do K là trung điểm MN 

\(\Rightarrow\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AD}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

Theo tính chất hbh: \(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)

Do O là tâm hình bình hành \(\Rightarrow\overrightarrow{AO}=\overrightarrow{OC}=\dfrac{1}{2}\overrightarrow{AC}\)

Mà H là trung điểm OC \(\Rightarrow\overrightarrow{OH}=\dfrac{1}{2}\overrightarrow{OC}=\dfrac{1}{4}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AH}=\overrightarrow{AO}+\overrightarrow{OH}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{KH}=\overrightarrow{KA}+\overrightarrow{AH}=-\overrightarrow{AK}+\overrightarrow{AH}\)

\(=-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{5}{12}\overrightarrow{AD}\)

\(\overrightarrow{AN}=2\overrightarrow{ND}\)

=>A,N,D thẳng hàng và AN=2ND

ABCD là hình bình hành tâm O

=>O là trung điểm chung của AC và BD

H là trung điểm của OC

nên HO=HC=1/2CO

=>\(HO=HC=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot CA=\dfrac{1}{4}CA\)

\(\overrightarrow{AM}=\overrightarrow{MB}\)

=>AM=MB và M nằm giữa A và B

=>M là trung điểm của AB

AN+ND=AD

=>2ND+ND=AD

=>AD=3ND

=>AN/AD=2/3

=>\(\overrightarrow{AN}=\dfrac{2}{3}\cdot\overrightarrow{AD}\)

\(\overrightarrow{KH}=\overrightarrow{KM}+\overrightarrow{MH}\)

\(=\dfrac{1}{2}\overrightarrow{NM}+\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CH}\)

\(=\dfrac{1}{2}\left(\overrightarrow{NA}+\overrightarrow{AM}\right)+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CA}\)

\(=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}\right)+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}+\dfrac{1}{4}\left(\overrightarrow{CD}+\overrightarrow{CB}\right)\)

\(=-\dfrac{1}{3}\overrightarrow{AD}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{5}{12}\overrightarrow{AD}\)

a) N trung điểm AD \(\Rightarrow AN=\frac{AD}{2}=\frac{BC}{2}\)

M trung điểm BC \(\Rightarrow MC=\frac{BC}{2}\Rightarrow AN=MC\)mà AN//MC

nên AMCN là hình bình hành \(\Rightarrow\overrightarrow{AM}=\overrightarrow{NC}\)

b) Tương tự câu a ta được \(\hept{\begin{cases}ND=BM=\frac{1}{2}BC\\ND//BM\end{cases}}\)=> NDMB là hình bình hành=> NB//DM (1)

Xét 2 tam giác ANI và NDK: \(\hept{\begin{cases}AN=ND=\frac{AD}{2}\\\widehat{NAI}=\widehat{DNK}\left(AM//NC\right)\\\widehat{ANI}=\widehat{NDK}\left(NB//MD\right)\end{cases}\Rightarrow\Delta ANI=\Delta NDK\left(g.c.g\right)}\)

\(\Rightarrow NI=DK\)(2)

(1), (2) => \(\overrightarrow{NI}=\overrightarrow{DK}\)

14 tháng 9 2021

\hept là j???