Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé .
a) Vì tứ giác ABCD là hình bình hành
=> AB // CD ( Tính chất )
AB = CD ( Tính chất )
Mà \(E\in AB;F\in CD\)
=> AE // CF
Lại có : E , F lần lượt là trung điểm của AB và CD
=> \(AE=EB=\frac{1}{2}AB\)
\(CF=FD=\frac{1}{2}CD\)
\(\Rightarrow AE=CF\)
Xét tứ giác AECF có :
AE // CF ( cmt )
AE = CF ( cmt )
Vậy tứ giác AECF là hình bình hành ( dhnb )
=> CE // AF ( tính chất )
b) Chứng minh tương tự a => Tứ giác DEBF là hình bình hành
=> DE // BF ( tính chất )
Gọi H là giao của AF và DE
Chứng minh giống a) ta được tứ giác AEFD là hình bình hành
=> H là trung điểm của AF ( tính chất )
Xét \(\Delta AFK\)có :
H là trung điểm của AF ( cmt )
HI // FK ( H và I thuộc DE , K thuộc FB )
=> HI là đường trung bình của \(\Delta\)AFK
=> I là trung điểm của AK ( Tính chất )
=> AI = IK (1)
Chứng minh tương tự với tam giác CIE ta được : IK = KC (2)
Từ (1) và (2) => AI = IK = KC
1:
Xet ΔOAE và ΔOCF có
góc OAE=góc OCF
góc AOE=góc COF
=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF
Xét ΔOEB và ΔOFD có
góc OEB=góc OFD
góc EOB=góc FOD
=>ΔOEB đồng dạng với ΔOFD
=>EB/FD=OE/OF=AE/CF
mà CF=DF
nên EB=AE
=>E là trung điểm của BA
1)
A B C D E F
Ta có:
* AB // CD (ABCD là hình bình hành (gt))
\(\Rightarrow\) AE // FC (1)
* Ta có: E là trung điểm AB (gt)
\(\Rightarrow\) EA = EB
F là trung điểm DC (gt)
\(\Rightarrow\) FD = FC
mà AB = DC
\(\Rightarrow\) AE = FC (2)
Từ (1)(2) \(\Rightarrow\) AECF là bình bình hành (dhnb3)
Sửa đề: N là trung điểm của BC
Gọi O là giao điểm của AC và BD
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔABD có
AO,DM là các đường trung tuyến
AO cắt DM tại I
Do đó: I là trọng tâm của ΔABD
Xét ΔCBD có
DN,CO là các đường trung tuyến
DN cắt CO tại K
Do đó: K là trọng tâm của ΔCBD
Xét ΔADB có
I là trọng tâm
AO là đường trung tuyến
Do đó: \(AI=\dfrac{2}{3}AO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AC=\dfrac{1}{3}AC\)
Xét ΔCBD có
CO là đường trung tuyến
K là trọng tâm
Do đó: \(CK=\dfrac{2}{3}CO=\dfrac{2}{3}\cdot\dfrac{1}{2}AC=\dfrac{1}{3}AC\)
Ta có: AI+IK+KC=AC
=>\(IK+\dfrac{1}{3}AC+\dfrac{1}{3}AC=AC\)
=>\(IK=\dfrac{1}{3}AC\)
=>AI=IK=KC