Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?
Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :
a) MENF là hình bình hành.
b) Các đường thẳng AC, BD, MN, EF đồng quy.
Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.
Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 6 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 7: Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.
a: ABCD là hình bình hành
=>\(\widehat{BAD}+\widehat{ABC}=180^0;\widehat{ABC}+\widehat{BCD}=180^0;\widehat{ADC}+\widehat{BCD}=180^0;\widehat{BAD}+\widehat{ADC}=180^0\)
\(\widehat{BAD}+\widehat{ABC}=180^0\)
=>\(2\cdot\left(\widehat{MAB}+\widehat{MBA}\right)=180^0\)
=>\(\widehat{MAB}+\widehat{MBA}=90^0\)
=>\(\widehat{AMB}=90^0\)
=>AM vuông góc MB
=>AN vuông góc BQ
b: \(\widehat{ADC}+\widehat{BCD}=180^0\)
=>\(2\cdot\left(\widehat{PDC}+\widehat{PCD}\right)=180^0\)
=>\(\widehat{PDC}+\widehat{PCD}=90^0\)
=>ΔPCD vuông tại P
=>\(\widehat{CPD}=90^0\)
=>\(\widehat{NPQ}=90^0\)
\(\widehat{BAD}+\widehat{ADC}=180^0\)
=>\(2\cdot\left(\widehat{NAD}+\widehat{NDA}\right)=180^0\)
=>\(\widehat{NAD}+\widehat{NDA}=90^0\)
=>ΔNAD vuông tại N
=>\(\widehat{AND}=90^0\)
=>\(\widehat{MNP}=90^0\)
Xét tứ giác MNPQ có
\(\widehat{MNP}=\widehat{NMQ}=\widehat{NPQ}=90^0\)
=>MNPQ là hình chữ nhật