K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

1/ Ta có AB//=CD (t/c hình bình hành)

KA=KB; IC=ID (đề bài)

=> AK//=IC => AKCI là hình bình hành => AI//CK

2/ Từ AI//CK và KB=KA theo talet

\(\Rightarrow\frac{KB}{KA}=\frac{NB}{NM}=1\Rightarrow NB=NM\left(1\right)\)

Từ AI//CK và ID=IC theo talet

\(\Rightarrow\frac{ID}{IC}=\frac{MD}{NM}=1\Rightarrow MD=MN\left(2\right)\)

Mà BD = MD + NM + NB (3)

Từ (1) (2) và (3) => MD=NM=NB => \(DM=\frac{BD}{3}\)

3/ Gọi O là giao của AC và BD

Do ABCD là hình bình hành => BD cắt BC tại O là trung điểm của AC (t/c đường chéo hbh)

Do AKCI là hình bình hành => IK cắt BC tại trung điểm O của BC (t/c đường chéo hbh)

=> BD; AC; IK đồng qui tại O

28 tháng 6 2021

Giải :

a) + K là trung điểm của AB ⇒ AK = \(\frac{AB}{2}\).

+ I là trung điểm của CD ⇒ CI = \(\frac{CD}{2}\).

+ ABCD là hình bình hành

⇒ AB // CD hay AK // CI

và AB = CD ⇒ AB/2 = \(\frac{CD}{2}\) hay AK = CI

+ Tứ giác AKCI có AK // CI và AK = CI

⇒ AKCI là hình bình hành.

b) + AKCI là hình bình hành

⇒ AI // KC hay \(\frac{MI}{NC}\).

28 tháng 6 2021

\(a)\)

\(K\)là trung điểm \(AB\)\(\Rightarrow AK=\frac{AB}{2}\)

\(I\)là trung điểm  \(CD\)\(\Rightarrow CI=\frac{CD}{2}\)

Mà theo đề ra: \(ABCD\)là hình bình hành

\(\Rightarrow AB//CD\)hay \(AK//CI\)

\(\Rightarrow AB=CD\Rightarrow\frac{AB}{2}=\frac{CD}{2}\)hay \(AK=CI\)

Tứ giác \(AKCI\)có \(AK//CI\)\(;\)\(AK=CI\)

\(\Rightarrow AKCI\)là hình bình hành

\(b)\)

Theo phần a), ta có: \(AKCI\)là hình bình hành

\(\Rightarrow AI//KC\)hay \(MI//NC\)

A K B N M I C D

29 tháng 11 2023

A H K B C D I F

1/

Ta có

\(ÁH\perp BD\left(gt\right);CK\perp BD\left(gt\right)\) => AH//CK (1)

Xét tg vuông ADH và tg vuông BCK có

AD//BC (cạnh đối hbh) \(\Rightarrow\widehat{ADH}=\widehat{CBK}\) (góc so le trong)

AD=BC (cạnh đối hbh)

=> tg ADH = tg BCK (Hai tg cuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=CK (2)

Từ (1) và (2) => AHCK là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

2/ 

Ta có

AH//CK (cmt) => AI//CF

AB//CD (cạnh đối hbh) => AF//CI

=> AICF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => AI = CF (cạnh đối hbh)

4/ Xét hbh AHCK có

AC cắt HK tại O' => O'H=O'K (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm HK

Mà O cũng là trung điểm HK

=> \(O\equiv O'\) => A; O; C thẳng hàng

5/

Xét hbh AHCK có

AC cắt HK tại O (cmt) => OA=OC

Xét hbh ABCD có

OA=OC (cmt) => OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

AICF là hbh (cmt) => FI cắt AC tại trung điểm O của AC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> AC; BD; IF đồng quy

 

 

2 tháng 10 2017

a ) AK = 1/2 AB

CI = 1/2 CD

Mà AB //= CD nên AK //= CI suy ra

AKCI - hình bình hành

Nên AI // CK

b )  Xét t/g DNC có :

I là trung điểm CD mà IM // NC

=> IM là đường trung bình của t/g DNC

=> MD = MN    ( 1 )

Xét t/g ABM có :

K là trung điểm AB mà KN // AM

=> KN là đường trung bình của t/g ABM   ( 2 )

Từ ( 1 ) ; ( 2 ) suy ra DM = MN = NB