Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html
hình tự vẽ nhé
do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD (1)
dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK
tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC
có góc PKC= góc BDC (PK//BD)
góc BDA=góc BKP (cùng = DBK)
góc AID=góc BCK
dễ dàng =) góc ADI = góc BCK
=) góc DAI = góc KBC
=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC
vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD (2)
từ (1) và (2) =) BM/MD = BP/PC
áp dụng định lí ta lét đảo =) MP//DC
chưa hiểu thì hỏi nhé
b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có
AD=CB
\(\widehat{ADK}=\widehat{CBH}\)
Do đó: ΔADK=ΔCBH
Suy ra: DK=BH
Xét tứ giác BKDH có
DK//BH
DK=BH
Do đó: BKDH là hình bình hành
a) Xét ΔABD vàΔ HAD có:
\(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)
\(\widehat{D}\) chung
⇒Δ ABD ∼ ΔHAD(g-g)
b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:
BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)
Theo câu a ta có:Δ ABD ∼ ΔHAD
⇒\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)
a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có
góc ADH chung
Do đó: ΔABD\(\sim\)ΔHAD
b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)
a: Xét ΔGAB có KC//AB
nên \(\dfrac{GC}{GB}=\dfrac{GK}{GA}\)
b: Xét ΔKAD và ΔAGB có
\(\widehat{KAD}=\widehat{AGB}\)(hai góc so le trong, DA//BC)
\(\widehat{AKD}=\widehat{GAB}\)(hai góc so le trong, DK//AB)
Do đó: ΔKAD đồng dạng với ΔAGB
=>\(\dfrac{AK}{AG}=\dfrac{AD}{GB}\)
=>\(\dfrac{AK}{AD}=\dfrac{AG}{GB}\)
=>\(\dfrac{AD}{AK}=\dfrac{BG}{GA}\)